Project Icon

Meta-Llama-3.1-70B-Instruct-bnb-4bit

量化调优技术显著提升性能,减少资源消耗

Unsloth工具实现对Llama 3.1等模型的量化,显著减少内存使用,提升运行速度至原来的2-5倍。提供适合初学者的Google Colab免费笔记本,简单加载数据集即可运行得到优化模型,可导出为GGUF、vLLM等格式或上传至Hugging Face。支持多种模型,如Llama-2、Gemma、Mistral,满足高效调优需求。

llama_3.1_q4 - 高效文本生成模型,结合优化技术提升性能
GithubHuggingfaceUnslothtransformers开源项目文本生成模型模型训练
llama_3.1_q4模型结合Unsloth与Huggingface TRL库,实现快速训练,保持8B参数模型的强大性能,优化文本生成能力。项目在Apache-2.0许可下开放使用,适用于多语言生成,由keetrap负责开发。
Meta-Llama-3.1-8B-Instruct-GGUF - Llama 3.1多语言指令模型的量化版本
GGUFGithubHuggingfaceMeta-Llamallama.cpp人工智能开源项目模型量化
Meta-Llama-3.1-8B-Instruct-GGUF是Llama 3.1模型的量化版本,使用llama.cpp技术实现。该项目提供多种精度的模型文件,从32GB的全精度到4GB的低精度,适应不同硬件需求。模型支持英语、德语、法语等多语言指令任务,可用于对话和问答。用户可选择合适的量化版本,在保持性能的同时优化资源使用。
Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic - 多语种量化优化模型,显著降低内存占用
GithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic多语言支持开源项目文本生成模型模型优化量化
通过将权重和激活量化为FP8格式,该项目优化了Llama-3.1-Nemotron模型,显著降低了GPU内存与磁盘的占用。模型适用于商业与研究,支持多语言开发和会话助手的构建。利用vLLM,可以实现高效部署并具有OpenAI兼容性。Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic在诸多测试中表现优良,在Arena-Hard评估中达99.41%的恢复率。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
Phi-3-mini-4k-instruct-bnb-4bit - 通过Unsloth工具提升深度学习模型微调速度与内存效率
GithubGoogle ColabHuggingfaceUnslothtransformers开源项目机器学习模型模型微调
项目通过提供免费、易于使用的Google Colab笔记本,便于在微调Phi-3.5、Llama 3.1、Mistral等深度学习模型时实现更高效的速度与内存管理,内存使用减少达74%。用户只需添加数据集并执行所有代码,便可获得加速至最高3.9倍的微调模型,支持导出多种格式或上传至Hugging Face平台。Colab快捷方式有效简化模型微调过程,适用于文本生成和对话模板。
mistral-7b-instruct-v0.3-bnb-4bit - Unsloth:加速大型语言模型微调的开源项目
GithubHuggingfaceUnsloth内存优化开源项目微调效率提升模型语言模型
mistral-7b-instruct-v0.3-bnb-4bit项目利用Unsloth技术提高大型语言模型的微调效率。该开源工具可将Mistral、Gemma和Llama 2等模型的微调速度提升2-5倍,同时减少70%的内存使用。项目提供多个针对不同模型的免费Colab笔记本,支持对话式和文本补全等微调任务,便于初学者实现高效模型优化。
mistral-7b-bnb-4bit - 更高效的模型微调与内存优化技术
GithubHuggingfaceMistral 7bUnsloth内存优化开源项目快速微调模型量化模型
Unsloth技术助力Mistral 7b在内存减少70%的同时实现5倍微调速度提升。项目提供多个适合初学者的Google Colab笔记,只需添加数据集并运行,便可生成更快的微调模型,支持导出到GGUF、vLLM或上传Hugging Face。此方案有效优化了Gemma 7b、Mistral 7b、Llama-2 7b等模型的性能和内存使用,提升模型微调效率。
gemma-2b-bnb-4bit - 提高模型微调速度和内存效率,支持多模型免费训练
GemmaGithubHuggingfaceLlamaMistralUnsloth开源项目模型模型微调
该项目提供了一套适用于Unsloth的Google Colab免费笔记本,通过优化微调,提升Gemma、Mistral和Llama等模型的执行速度至2至5倍,且减少内存使用达70%。用户只需添加数据集并运行,即可快速获得微调模型,还可导出为多种格式或上传至Hugging Face。项目特点包括对初学者的友好性和对多模型的支持,成为高效深度学习的重要工具。
Meta-Llama-3.1-70B-Instruct-quantized.w4a16 - Meta-Llama 3.1 70B模型的INT4量化版本 性能几乎不损
GithubHuggingfaceINT4Meta-Llama-3.1vLLM开源项目模型自然语言处理量化模型
Meta-Llama-3.1-70B-Instruct模型的INT4量化版本,模型大小减少75%,但性能几乎不损。支持多语言,适用于商业和研究。可通过vLLM高效部署,在Arena-Hard、OpenLLM和HumanEval等测试中表现优异,展示出卓越的推理和编码能力。
gemma-2-9b-bnb-4bit - 开源工具加速大型语言模型微调并降低内存占用
ColabGithubHuggingfaceUnsloth大语言模型开源项目微调性能优化模型
这是一个用于优化大型语言模型微调过程的开源项目。它兼容Gemma、Llama 3和Mistral等多种主流模型,可以将微调速度提高2-5倍,同时将内存使用量减少70%。项目提供了面向初学者的Colab笔记本,使用者只需添加数据集并运行即可完成高效微调。此外,该工具还支持将模型导出为GGUF格式或直接上传至Hugging Face平台。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号