Project Icon

gemma-2-9b-bnb-4bit

开源工具加速大型语言模型微调并降低内存占用

这是一个用于优化大型语言模型微调过程的开源项目。它兼容Gemma、Llama 3和Mistral等多种主流模型,可以将微调速度提高2-5倍,同时将内存使用量减少70%。项目提供了面向初学者的Colab笔记本,使用者只需添加数据集并运行即可完成高效微调。此外,该工具还支持将模型导出为GGUF格式或直接上传至Hugging Face平台。

gemma-2b-bnb-4bit - 提高模型微调速度和内存效率,支持多模型免费训练
GemmaGithubHuggingfaceLlamaMistralUnsloth开源项目模型模型微调
该项目提供了一套适用于Unsloth的Google Colab免费笔记本,通过优化微调,提升Gemma、Mistral和Llama等模型的执行速度至2至5倍,且减少内存使用达70%。用户只需添加数据集并运行,即可快速获得微调模型,还可导出为多种格式或上传至Hugging Face。项目特点包括对初学者的友好性和对多模型的支持,成为高效深度学习的重要工具。
gemma-2-9b-it - 优化模型微调,降低内存使用,提升处理性能
GithubHuggingfacetransformers免费调优内存优化开源项目机器学习模型量化模型
采用Unsloth技术,通过4bit量化实现Gemma 2 (9B)模型在低内存环境下的高效微调。Google Colab笔记本适合初学者,便于用户添加数据集和运行,获得性能提升至2倍的微调模型,支持导出为GGUF、vLLM或上传至Hugging Face,并减少内存使用达63%。
gemma-2-2b-it-bnb-4bit - Gemma模型量化优化实现快速微调与内存高效管理
GemmaGithubHuggingfacetransformers开源项目机器学习模型模型微调模型量化
这是一个面向Gemma-2-2b模型的量化优化项目,集成了bitsandbytes和Unsloth技术,显著提升了模型微调效率并降低内存占用。项目通过Google Colab提供开箱即用的运行环境,支持一键式模型优化,并可将优化后的模型导出为GGUF格式或部署至vLLM平台。该方案特别适合资源受限环境下的模型优化需求。
codegemma-2b - 深度学习模型微调的新方案:提升效率与内存节约
GemmaGithubHuggingfaceLlama-2Unslothfinetune内存优化开源项目模型
CodeGemma-2b项目使用Unsloth技术,加速多个深度学习模型的微调,包括Mistral、Gemma、Llama等。速度提升最高达5倍,内存使用减少70%。通过Google Colab和Kaggle的免费notebook,用户可以轻松展开微调工作。简化的界面设计支持从数据添加到模型导出的完整流程,适合初学者快速上手。这种创新优化方法节省计算资源,提高模型性能,是开发者提升生产力的有力助手。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
GithubGoogle ColabHuggingfaceUnsloth内存优化学习笔记本开源项目模型模型微调
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
gemma-2-9b-it-bnb-4bit - 基于Unsloth框架的语言模型量化微调方案
GemmaGithubHuggingfaceUnsloth大语言模型开源项目模型模型微调深度学习
基于Gemma 2 9B模型开发的4bit量化项目,通过Unsloth框架优化实现显存占用降低70%、训练速度提升2-5倍的性能表现。项目集成Colab环境,支持模型训练、GGUF格式导出及Hugging Face部署,为大语言模型的量化训练提供完整解决方案。
gemma-2-2b-bnb-4bit - Gemma模型4bit量化实现提速降耗的AI推理优化
GemmaGithubHuggingfaceLlamaUnsloth开源项目机器学习模型模型微调
该项目对Gemma-2-2b模型进行4bit量化优化,通过bitsandbytes技术实现高效压缩。在Google Colab环境下可实现2倍以上推理速度提升,同时节省60%以上内存占用。项目提供完整的模型微调支持,可帮助开发者在有限算力条件下高效部署语言模型。
Mistral-Nemo-Instruct-2407-bnb-4bit - 高效LLM微调框架提速2-5倍并减少70%内存使用
GithubHuggingfaceUnsloth加速训练大语言模型开源项目微调模型节省内存
该项目为Mistral、Gemma、Llama等大语言模型提供高效微调框架。利用Unsloth技术,训练速度提升2-5倍,内存使用减少70%。项目提供多个免费Google Colab笔记本,支持Llama-3 8b、Gemma 7b、Mistral 7b等模型训练。框架操作简单,适合初学者使用,支持将微调模型导出为GGUF、vLLM格式或上传至Hugging Face平台。
llama-3-8b-bnb-4bit - 大语言模型微调工具提升训练速度并降低内存使用
AI训练GithubHuggingfaceLlama 3MetaUnsloth大语言模型开源项目模型
llama-3-8b-bnb-4bit项目是一种高效的大语言模型微调方法,能将训练速度提升2-5倍,同时减少70%内存使用。支持Llama 3.1、Gemma 2和Mistral等热门模型,并提供面向初学者的Google Colab笔记本。用户可以快速微调模型并导出为GGUF、vLLM格式或上传至Hugging Face。该工具降低了LLM微调的门槛,为开发者和研究者提供了便利。
mistral-7b-instruct-v0.2-bnb-4bit - 使用Unsloth技术优化模型微调,显著提升性能并减少内存占用
GithubHuggingfaceMistralUnsloth开源项目性能优化数据集机器学习模型
该项目介绍了一种运用Unsloth技术的模型微调方法,使Mistral、Gemma、Llama等模型实现2-5倍的速度提升,并减少70%的内存使用。用户可通过在Google Colab或Kaggle运行免费笔记本,轻松获得经过优化的模型。工具初学者友好,支持多种微调和导出格式,如GGUF、vLLM,及上传至Hugging Face,满足不同用户的需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号