Project Icon

uform-gen2-dpo

基于偏好优化的视觉语言模型 用于图像描述和视觉问答

UForm-Gen2-dpo是一个经过直接偏好优化(DPO)训练的视觉语言模型,专门用于图像描述和视觉问答。该模型结合了CLIP式ViT-H/14视觉编码器和Qwen1.5-0.5B-Chat语言模型,能够生成准确的图像描述、回答图像相关问题,并支持多模态对话。在MME基准测试中,UForm-Gen2-dpo在感知、推理、OCR等多个图像理解任务上展现出优秀性能,为视觉语言处理提供了高效可靠的解决方案。

uform-gen2-qwen-500m - 小型多模态模型实现图像描述和视觉问答
GithubHuggingfaceUForm图像理解图像生成多模态AI开源项目模型视觉问答
UForm-Gen2-Qwen-500m是一款小型视觉语言模型,专注于图像描述和视觉问答。模型结合了ViT-H/14和Qwen1.5-0.5B-Chat,通过预训练和微调提升性能。支持图像描述、问答和多模态聊天功能,在多项基准测试中表现良好,适用于计算资源有限的场景。
uform - 用于内容理解和生成的袖珍型多模态 AI
GithubONNXUForm多模态AI嵌入模型开源项目生成模型
UForm是一个全面的多模态AI库,涵盖了从文本到图像,乃至视频剪辑的生成与理解等多种功能。支持多种语言,包含轻量级生成模型及高效的预训练变压模型,能够广泛应用于从服务器到智能手机等不同设备。主要优势包括快速的搜索性能、简易的模型部署过程及卓越的多语言应用能力,适用于快速嵌入、语义搜索、图像标题生成和视觉问答等多种场景。
blip2-opt-2.7b - 集成图像理解与语言生成的视觉语言模型
BLIP-2GithubHuggingface图像描述图像识别开源项目模型自然语言处理视觉问答
BLIP-2 OPT-2.7b是一款结合CLIP图像编码器、查询转换器和OPT-2.7b语言模型的视觉语言系统。该模型能够进行图像描述、视觉问答和图像对话等任务,通过独特的查询转换器架构实现了高效的图像理解和文本生成。BLIP-2在图像-文本处理领域展现出广泛应用前景,但也存在潜在偏见和局限性,需要在实际应用中谨慎评估。
blip2-opt-2.7b-coco - BLIP-2视觉语言模型实现图像描述和视觉问答功能
BLIP-2GithubHuggingfaceOPT-2.7b图像到文本图像编码器开源项目模型视觉问答
BLIP-2是一个集成CLIP图像编码器、查询转换器和OPT-2.7b语言模型的视觉语言系统。该模型支持图像描述、视觉问答和图像对话任务,在COCO数据集上经过微调,拥有27亿参数。BLIP-2能够生成与图像相关的高质量文本,但可能存在偏见和安全性问题,使用时需谨慎评估其输出结果。
blip2-opt-6.7b-coco - 结合图像理解与自然语言处理的多模态AI系统
BLIP-2GithubHuggingfaceOPT-6.7b图像标注图像编码器开源项目模型视觉问答
BLIP-2是一种创新的视觉-语言AI系统,集成了CLIP图像编码器、查询转换器和OPT-6.7b大型语言模型。通过冻结预训练的图像编码器和语言模型,仅训练查询转换器,实现了视觉和语言的有效桥接。该模型能够完成图像描述、视觉问答和基于图像的对话等多样化任务。尽管BLIP-2继承了OPT模型的强大能力,但研究人员在应用时需要注意评估其在特定场景中可能存在的偏见和安全风险。
Qwen2-VL-72B-Instruct-GPTQ-Int8 - 改进视觉和文本处理能力的多模态模型
GithubHuggingfaceQwen2-VL多模态多语言支持开源项目模型视觉理解视频分析
本项目是一个多模态视觉语言模型,具有高效的图像理解和多语言支持。它能够处理超过20分钟的视频内容,并可整合到移动设备和机器人中进行自动化操作。通过应用动态分辨率处理和多模态旋转位置嵌入,该模型提升了视觉处理能力。此外,项目还提供了便于快速部署的工具包,助力处理各类视觉任务。
visualglm-6b - 中英文图像交互的多模态对话模型
GithubHuggingfaceVisualGLM-6B图像生成多模态对话开源项目模型语言模型预训练
VisualGLM-6B是一个多模态对话模型,支持中文、英文和图像交互。基于ChatGLM-6B,有78亿参数,通过BLIP2-Qformer桥接视觉和语言模型。此模型使用CogView数据集进行预训练,并在长视觉问答数据上微调,以生成符合人类偏好的回答。用户可用Python代码简便调用模型,同时提供命令行、网页示例及模型量化的详细说明。
llava-onevision-qwen2-72b-ov-chat - 多模态大语言模型支持图像、多图和视频交互
GithubHuggingfaceLLaVA-OneVision人工智能图像处理多模态开源项目模型自然语言处理
llava-onevision-qwen2-72b-ov-chat是一个为聊天场景优化的多模态大语言模型。该模型基于llava-onevision-72b-ov构建,通过迭代DPO训练提升了聊天能力,同时保持了良好的指令遵循能力。模型支持图像、多图和视频交互,在英语和中文方面表现出色。研究显示,其采用的迭代DPO训练方法有效增强了模型的聊天表现。
vit-gpt2-image-captioning - ViT-GPT2结合的智能图像描述生成模型
GithubHuggingfacetransformers图像描述开源项目模型深度学习自然语言处理计算机视觉
vit-gpt2-image-captioning是一个结合视觉Transformer和GPT-2的图像描述生成模型。该模型能准确识别图像内容并生成对应文本描述,支持多种图像输入方式,易于集成应用。项目提供简单使用示例和Transformers pipeline部署方法,为开发者提供了实用的开源图像描述解决方案。
llava-onevision-qwen2-72b-si - 多模态模型提高视觉数据交互准确率
GithubHuggingfaceLLaVA-OneVision准确率图像交互多模态开源项目模型预训练模型
此开源项目使用多模态模型,准确率介于85.1%至93.7%之间,在AI2D、DocVQA、Science-QA等数据集表现优异。基于Qwen2语言模型,LLaVA-OneVision能在多语言环境中与视觉数据进行交互,经过大型图像及视频数据集训练,使用bfloat16精度。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号