Project Icon

Transformers_And_LLM_Are_What_You_Dont_Need

分析深度学习模型在时间序列预测中的表现与局限

本项目汇集大量研究论文和文章,深入分析变压器和大语言模型在时间序列预测中的表现及局限性。探讨这些深度学习模型处理时间序列数据的挑战,并介绍更适合的替代方法。为时间序列预测领域的研究和应用提供全面的参考资源。

Autoformer - 具有自相关性的分解变压器,用于长期序列预测
AutoformerGithubTransformer开源项目时间序列预测自动相关机制长期预测
Autoformer是一种长时间序列预测的通用模型,采用分解变压器和自动相关机制,实现38%的预测精度提升,覆盖能源、交通、经济、天气和疾病等应用领域。最近,该模型已被纳入Hugging Face和Time-Series-Library,并在2022年冬奥会中用于天气预报。Autoformer不同于传统Transformer,不需位置嵌入,具备内在的对数线性复杂度,易于实现和复现。
Large-Time-Series-Model - 大规模生成式预训练时间序列模型
GithubTimerTransformer大规模数据集开源项目时间序列模型预训练
Timer是一款基于生成式预训练Transformer的大规模时间序列模型。该模型在包含10亿时间点的UTSD数据集上预训练,可用于预测、插值和异常检测等多项任务。Timer采用解码器架构,支持灵活序列长度,在少样本场景下表现优异。项目开源了模型代码、数据集和预训练权重,为时间序列大模型研究奠定基础。
llama3-8B-usenet-merged - 高效NLP模型潜力与使用指南
GithubHuggingfacetransformers偏见开源项目模型语言处理限制
探讨使用transformers库的NLP模型,通过环境影响分析及初学者指南,了解其应用潜力及可能的偏见与限制。
v3_1_pt_ep1_sft_5_based_on_llama3_1_70b_final_data_20241026 - 揭示新型Transformer模型的实际应用与研究进展
GithubHuggingfacetransformers偏见开源项目模型模型卡环境影响评估
该文档介绍了新型Transformers模型的功能、应用领域与局限性,包含使用指南、训练数据概述、程序步骤、评估方法及其环境影响评估,为读者提供全面的信息参考。
iTransformer - 先进的时间序列预测模型,打造SOTA性能
GithubiTransformer人工智能开源项目时间序列预测注意力网络深度学习
iTransformer是一种基于注意力机制的时间序列预测模型,由清华大学和蚂蚁集团研究人员开发。该模型采用倒置Transformer结构,支持多变量和多步长预测。iTransformer引入了可逆实例归一化等技术,旨在提高预测准确性和处理长序列数据的能力。这个开源项目为时间序列分析提供了新的研究方向。项目提供Python实现,支持使用PyTorch框架。用户可通过pip安装并轻松集成到现有的时间序列分析工作流程中。该项目还包括实验性功能,如二维注意力和傅里叶变换增强版本,为研究人员提供了探索和改进的空间。
TSFpaper - 时间序列与时空预测论文精选合集
GithubSpatio-Temporal ForecastingTime Series ForecastingTransformerdeep learningmultivariate forecasting开源项目
本仓库收录了300多篇时间序列与时空预测的论文,涵盖多种预测模型类型。这些论文包括顶级会议和期刊发表的研究成果以及最新的arXiv论文。支持单变量、多变量及不规则时间序列预测,广泛应用于交通和天气等领域。仓库内容持续更新,并推荐热门工具库和最新模型,是时间序列预测研究的重要资源。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
Anomaly-Transformer - 创新时间序列异常检测模型的新方法
Anomaly-TransformerGithub开源项目异常检测无监督学习时间序列注意力机制
Anomaly-Transformer是一种时间序列异常检测模型,利用关联差异作为可区分标准,并结合Anomaly-Attention机制和极小极大策略提高检测效果。该模型在多个基准数据集上展现出优秀性能,为无监督时间序列异常检测领域提供了新的解决方案。
Transformers-Recipe - 学习与应用Transformer的指南
AttentionGithubNLPTransformer开源项目强化学习计算机视觉
该指南为自然语言处理(NLP)及其他领域的学习者提供了丰富的Transformer学习资源,包括基础介绍、技术解析、实际实现和应用。通过精选的文章、视频和代码示例,帮助用户深入掌握Transformer模型的理论与实践。
trading-momentum-transformer - 深度学习驱动的Momentum Transformer及其在交易中的应用
GithubLSTMMomentum Transformer交易策略变点检测开源项目深度学习
Momentum Transformer和Slow Momentum with Fast Reversion模型利用深度学习和变革点检测,在波动市场中表现出众。通过多头注意力机制和可解释变量选择网络,这些模型在趋势转折点上展现很强的适应力。经过优化,模型在1995至2020年期间的表现显著提升,尤其在2015至2020年间,有效应对市场不稳定性,提高风险调整后的收益率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号