Project Icon

MiniLM-L6-Keyword-Extraction

高效句子嵌入模型,用于语义搜索与信息聚类

此项目通过自监督对比学习,训练出可将句子和段落转化为384维向量的模型,适用于语义搜索、信息检索和句子相似度任务。模型基于1B句子对数据集微调,利用TPU v3-8进行训练,并在Hugging Face社区活动期间开发。用户可使用sentence-transformers或HuggingFace Transformers实现多种自然语言处理应用。

bge-small-en-v1.5 - 轻量级高性能英语句子嵌入模型
GithubHuggingfacesentence-transformers开源项目文本分类模型聚类自然语言处理语义相似度
BGE-small-en-v1.5是一款轻量级英语句子嵌入模型,在文本分类、检索、聚类和语义相似度等多项NLP任务中表现出色。该模型在MTEB基准测试中展现了优异性能,同时保持了较小的模型规模,适合需要高效句子向量化的应用场景。模型在MTEB评估中的多项任务上表现突出,包括亚马逊评论分类、ArguAna论点检索和BIOSSES生物医学语义相似度等,为各类NLP应用提供了高效的句子向量化解决方案。
ms-marco-MiniLM-L-6-v2 - 高性能跨编码器模型用于信息检索和文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
ms-marco-MiniLM-L-6-v2是一款针对MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现卓越,能够高效编码和排序查询与文本段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集评测中,模型展现出优异性能,NDCG@10和MRR@10分别达到74.30和39.01。ms-marco-MiniLM-L-6-v2兼顾效率与准确性,每秒可处理1800个文档,为信息检索应用提供了实用解决方案。
sentence-transformers-e5-large-v2 - 句子向量化模型实现文本相似度检索和聚类
GithubHuggingfaceembaas APIsentence-transformers句子嵌入开源项目模型自然语言处理语义搜索
sentence-transformers-e5-large-v2模型是intfloat/e5-large-v2的改进版本,能将文本映射至1024维向量空间。该模型在聚类和语义搜索方面表现出色,支持通过sentence-transformers库或embaas API快速集成。模型在MTEB评测中获得优异成绩,为文本嵌入和相似度计算提供了有力支持。
paraphrase-albert-small-v2 - ALBERT轻量级句子嵌入模型实现语义相似度分析
ALBERTGithubHuggingfacesentence-transformers句子嵌入开源项目模型自然语言处理语义搜索
paraphrase-albert-small-v2是一个基于ALBERT架构的轻量级句子嵌入模型。它将句子转换为768维向量表示,可用于语义搜索、聚类等自然语言处理任务。该模型支持Python等多种编程接口,便于集成到各类应用中。在句子相似度基准测试中表现优异,为文本语义分析提供了高效可靠的解决方案。
multilingual-e5-large-pooled - 多语言支持的句子相似性与特征提取模型
GithubHuggingfaceMTEBmultilingual-e5-large分类句子相似度开源项目模型特征提取
此项目基于多语言处理,融合Sentence Transformers技术,专注于句子相似性与特征提取。支持多语言,适用于分类、重排序、文本聚类等多种场景。模型在各种任务中表现优异,如MTEB AmazonCounterfactualClassification和MTEB BUCC中的分类与双语文本挖掘,表现出色。采用MIT许可证,具有高度使用灵活性。
paraphrase-distilroberta-base-v1 - DistilRoBERTa基础句子嵌入模型用于语义搜索和文本分析
GithubHuggingfaceRobertaModelsentence-transformers向量嵌入开源项目模型自然语言处理语义相似度
paraphrase-distilroberta-base-v1是基于sentence-transformers的句子嵌入模型,将文本映射至768维向量空间。该模型采用DistilRoBERTa架构,在保持性能的同时提升效率,可用于文本聚类、语义搜索等任务。支持多种编程接口,适用于多种自然语言处理应用场景。
stsb-distilbert-base - 语义搜索与聚类任务的句子嵌入模型
GithubHuggingfacesentence-transformers句子嵌入开源项目机器学习模型模型自然语言处理语义搜索
此模型将句子和段落转换为768维的稠密向量,适用于语义搜索和聚类任务。然而,由于其性能已不再是最优,建议选择更优质的句子嵌入模型。如需使用,可通过安装sentence-transformers库轻松实现,或使用HuggingFace Transformers进行更高级的处理,如加入注意力掩码的平均池化。尽管模型效能下降,其架构仍有参考价值。
quora-distilbert-multilingual - 跨语言句子嵌入与语义搜索解决方案
DistilBertGithubHuggingfacesentence-transformers句子相似性开源项目模型特征提取语义搜索
quora-distilbert-multilingual是一款依托sentence-transformers框架的模型,可将句子和段落转换为768维的向量,从而助力于句子聚类和语义搜索。用户可以选择使用sentence-transformers库简便地安装和使用,也可利用HuggingFace Transformers手动实现句子嵌入。该模型在Sentence Embeddings Benchmark测试中表现优异,模型结构包含DistilBert变换器和平均池化操作,为句子提供高效的表示能力。
paraphrase-xlm-r-multilingual-v1 - 多语言句子嵌入模型 生成768维向量用于相似度计算
GithubHuggingfacesentence-transformers向量嵌入多语言模型开源项目模型自然语言处理语义相似度
这是一个基于sentence-transformers的多语言句子嵌入模型。该模型将句子和段落映射到768维向量空间,适用于聚类和语义搜索等任务。模型支持多语言输入,可通过简单的Python代码调用。它基于XLM-RoBERTa架构,采用平均池化方法生成句子嵌入。模型性能可在Sentence Embeddings Benchmark网站查看评估结果。
distilbert-base-nli-mean-tokens - 基于DistilBERT的句子嵌入模型用于文本聚类和语义搜索
DistilBERTGithubHuggingfacesentence-transformers开源项目文本嵌入模型自然语言处理语义搜索
distilbert-base-nli-mean-tokens是一个基于sentence-transformers框架的句子嵌入模型。它能将文本映射为768维向量,适用于文本聚类和语义搜索。尽管已不推荐使用,但该模型仍是学习句子嵌入技术的典型案例。它展示了如何结合DistilBERT和平均池化生成句向量,可通过sentence-transformers库轻松调用。这个开源项目为自然语言处理领域提供了有价值的参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号