Project Icon

MMDialog

推进多模态开放域对话研究的大规模数据集

MMDialog是一个包含丰富文本和图像信息的大规模多轮对话数据集。它提供详细的数据统计、格式说明和评估方法,适用于多模态开放域对话研究。学术研究人员可通过申请流程获取该数据集,用于非商业性研究。MMDialog为自然语言处理领域的多样化对话任务研究提供了重要资源。

MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation

This repository is the official site of ACL'23 paper: MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation

About the dataset

A Dialogue Case of MMDialog:

Dataset ADialogueCase

Statistics:

Dataset Statistics Dataset Statistics

If you use it in your work, please cite our paper: LINK PDF

@inproceedings{feng-etal-2023-mmdialog,
    title = "{MMD}ialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation",
    author = "Feng, Jiazhan and Sun, Qingfeng and Xu, Can and Zhao, Pu and Yang, Yaming and Tao, Chongyang and Zhao, Dongyan and Lin, Qingwei",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.405",
    doi = "10.18653/v1/2023.acl-long.405",
    pages = "7348--7363"
}

Dataset Folder Format:

Dataset Format

File: conversations.json

Dialogue Case

Note:

  1. Training set do not contains "negative_candidate_media_keys" and "negative_candidate_texts", which only exists in test and validation set. Each "negative_candidate_xxx" contains 999 negative candidates for retrieval task.
  2. All image filenames are in "media_key.jpg" format.
  3. Words like :smiling_face_with_smiling_eyes: and :raising_hands: are emotion tokens, please refer to https://github.com/carpedm20/emoji
  4. To compute the CLIP scores in metric MM-Relevance, we provide a demo in compute_mmrel.py.
  5. We also provide an evaluation example for metrics evaluated within a single modality (e.g., BLEU, Recall) in EvaluationExample.md.

How to get the dataset

To get this dataset, you and your organization require:

  1. Who it's for: You are either a master’s student, doctoral candidate, post-doc, faculty, or research-focused employee at an academic institution or university.
  2. Non-commercial use: You should only use this access for non-commercial purposes.
  3. Clearly Plan: You have a clearly defined research objective, and you have specific plans for how you intend to use and analyze this data from your research.
  4. Promise your behavior: You should promise you would not share this dataset without our qualification review and permission.

If you don't meet all of the requirements above, we would not share you the dataset.

We need you to fill in the form below:

ItemDescription
Your Name[Your name here]
Your Role[master’s student / doctoral candidate / post-doc / faculty / research-focused employee / others]
Your Study or Work Organizatione.g. Microsoft Research, DeepMind, Cornell University, ...
Your Personal Academic Homepage With PublicationsYour [Google Scholar] or [Homepage_URL running on your organization website (e.g. yourname.people.xxx.edu / yourname.xxx.people.msr.microsoft.com)] with publications.
Non-commercial UseI [promise / cannot promise] that I will not apply this MMDialog dataset to commercial scenarios or products.
Sharing LimitationI [promise / cannot promise] I would not share this MMDialog dataset without your qualification review and permission.
Your Plan(Describe your research plan and how you intend to use and analyze this data from your research. >= 50 words)

Then use your edu or research email account to send the form to [fengjiazhan@pku.edu.cn] for a review, if you meet all the requirements, we would share you a cloud folder which stores the pre-processed dataset within a week.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号