Project Icon

pytorch-auto-drive

基于 PyTorch 的分割模型和车道检测模型

框架基于纯Python和PyTorch,提供从模型训练、测试到可视化和部署的全方位支持。特色包括多种主干网络、简洁易懂的代码、混合精度训练及ONNX和TensorRT的部署支持。该框架中模型训练速度快,性能优于其他实现,支持多种数据集和模型方法,为自动驾驶研究提供可靠的基准测试和高效工具。

PETR - 多视角3D感知框架 目标检测与BEV分割的统一解决方案
3D目标检测GithubPETRv2nuScenes数据集位置嵌入多视图感知开源项目
PETR是一个多视角3D感知框架,通过位置嵌入变换将3D坐标信息编码到图像特征中。其升级版PETRv2引入时序建模,支持目标检测和BEV分割。该框架在nuScenes数据集上展现了出色性能,为3D感知研究提供了有力基线。此外,PETR还支持3D车道线检测,相关工作在CVPR 2023工作坊中获得第一名。
yolos-small-finetuned-license-plate-detection - 车牌识别微调模型提升物体检测能力
GithubHuggingfaceYOLOS开源项目模型模型微调目标检测视觉Transformer车牌识别
YOLOS小型模型经过微调适用于车牌检测,使用5200张图片进行训练,并在380张图片上验证,实现49.0的平均精度。模型支持PyTorch平台,并通过Python代码执行对象检测与边界框预测。其此前版本曾在ImageNet-1k和COCO 2017数据集上进行训练,具备卓越的识别性能。
PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
AutoAct - 自主规划驱动的智能体学习框架
AutoActGithub人工智能大语言模型开源项目机器学习自然语言处理
AutoAct是一个创新的智能体学习框架,无需大规模标注数据或闭源模型。该框架通过自主规划合成轨迹,并自动分化子智能体群组完成任务。实验结果显示,AutoAct在多种语言模型上的表现与强基线相当或更优。这种方法为智能体学习提供了高效、可复现的新途径。
DSVT - 易于部署的大规模点云3D对象检测系统
3D对象检测CVPR 2023DSVTGithubWaymo动态稀疏体素转化器开源项目
DSVT是一款高效且易于部署的大规模点云3D对象检测系统,适用于Waymo和NuScenes等数据集。通过动态稀疏体素变换器和旋转集合分区策略,DSVT实现了27Hz的实时推理速度,提供了在单帧和多帧检测中的卓越表现,适用于自动驾驶等场景。
serve - 提高PyTorch模型服务效率和安全性的关键技术
GithubPyTorchTorchServe大规模模型安全性开源项目模型服务
TorchServe是一款高效灵活的平台,用于生产环境中PyTorch模型的部署和扩展。最新版本通过默认启用的令牌授权机制和增强的模型API控制,有效预防未授权API调用和恶意代码风险。此外,该平台还支持在不同环境(包括本地、云服务及各类硬件)中快速部署模型。
deepdoctection - 文档AI:基于深度学习的提取与布局分析工具包
GithubOCRdeepdoctection开源项目文档AI模型深度学习
deepdoctection是一个Python库,通过深度学习模型实现文档提取和布局分析,支持对象检测、OCR和文本挖掘。此集成框架结合Tensorflow或PyTorch等库,适用于PDF或扫描图片文档处理,支持文档布局分析、表格识别和文本分类等任务,致力于解决实际应用问题,是文档处理领域开发者的理想选择。
LaneGCN - 基于车道图表示的车辆运动预测方法
GithubLaneGCN开源项目自动驾驶计算机视觉车道图表示运动预测
LaneGCN是一种基于车道图表示的车辆运动预测方法。该方法利用图卷积网络处理复杂道路拓扑,提高了预测准确性。LaneGCN在Argoverse运动预测竞赛中取得第一名,显示了其在自动驾驶领域的应用潜力。项目提供了开源代码和预训练模型,便于研究人员进行复现和深入研究。
ultimateALPR-SDK - 车牌识别及多功能车辆特性检测解决方案
AndroidDeep LearningGithubLicense Plate RecognitionNVIDIAUltimateALPR开源项目
结合最新深度学习技术,ultimateALPR-SDK 提供卓越的识别速度和精度。适用于多个操作系统和编程语言,功能包括车牌识别、夜视图像增强、车辆颜色识别等。通过内置计算减少系统成本,无需专用硬件或网络连接,适用于智能交通。支持多平台并附有详细文档和示例程序,帮助开发者迅速上手。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号