Project Icon

wuerstchen-prior

文本驱动的图像生成 极致压缩实现高效推理

Würstchen项目采用创新的两阶段压缩方法,实现了高达42倍的空间压缩,显著降低了文本到图像的生成成本。初步压缩由VQGAN完成,随后扩散自编码器进一步优化。关键的Stage C在小型潜空间中高效运行,适应高分辨率图像如2048x2048,仍保持对计算资源的低需求。使用固定预训练的文本编码器CLIP ViT-bigG/14,该模型能够经济高效地产生基于文本提示的高质量图像。

wuerstchen - 提供42倍空间压缩的高效文本到图像生成模型
AI绘图GithubHuggingfaceWürstchen图像压缩开源项目损失重建模型模型开发
模型通过先进的42倍空间压缩技术革新文本到图像生成,大幅降低计算成本,提速推理过程。其双阶段结构,包括VQGAN和Diffusion Autoencoder,在广泛的图像分辨率下保持优良表现。尽管存在细节重建问题,尤其在面部和手部图像中,它仍是一个极具潜力的开源项目,适用于多语言图像生成与修改。
Wuerstchen - 基于高度压缩潜在空间的文本到图像生成模型
GithubHugging FaceWürstchen压缩图像生成开源项目文本条件模型
Würstchen通过在高度压缩的潜在空间中进行文本条件处理,能够实现42倍压缩并保留高质量的图像重构。该模型的多阶段压缩策略显著降低了训练时间和计算成本。用户可以借助Colab和diffusers库使用Würstchen生成文本到图像的内容,同时提供Stage B和Stage C的训练脚本便于用户自行训练模型。详细信息请查看官方文档和论文。
stable-cascade-prior - 探索高效图像生成与文本到图像转换模型
GithubHuggingfaceStable Cascade图像压缩开源项目文本生成图像模型模型效率生成模型
Stable Cascade Prior基于Würstchen架构,是一种高效的图像生成模型。其显著优势在于快速的推理速度和低昂的训练成本。依靠卓越的图像压缩能力,该模型可以将1024x1024图像压缩至24x24而不丢失细节,非常适合需要高效生成的场景。支持包括finetuning在内的多种扩展,并在提示对齐和美学质量上表现出色,适用于研究、教育、艺术设计等领域。访问其GitHub仓库,了解更多功能与使用案例。
internlm-xcomposer2d5-7b-4bit - 简化大型语言模型的文本与图像处理新纪元
4位量化模型GithubHuggingfaceInternLM-XComposer开源项目文本图像理解模型视频理解长上下文能力
InternLM-XComposer2.5在文本与图像理解领域展现非凡性能,其应用灵活性媲美GPT-4V,仅靠7B参数即可完成复杂任务。模型通过24K图文上下文训练与96K扩展能力,适用于大量输入输出任务。此外,项目提供了4-bit量化模型来有效降低内存消耗,并支持使用Transformers快速集成,涵盖从视频理解到多图对话的多种应用场景。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
bigaspv2lustify-v10-sdxl - 高精度的文本生成图像模型,提升视觉真实性
GithubHuggingfacestable-diffusiontext-to-image图像生成开源项目模型现实主义
该项目展示了一个结合Stable Diffusion技术的先进文本生成图像模型,能够生成非常逼真的图像效果。由用户ffjggrtbjibv创建,其模型适用于复杂图像创建与需要真实效果的场景。凭借现代化的图像生成算法,这个模型在图像质量和细节表现上得到显著提升,为创作提供更大的灵活性与创意空间。
gan-compression - 条件生成对抗网络的高效压缩技术
GAN CompressionGithub图像生成开源项目性能优化条件生成对抗网络模型压缩
GAN Compression项目提出了一种通用的条件生成对抗网络压缩方法,可将pix2pix、CycleGAN等模型的计算量减少9-29倍,同时保持视觉质量。该方法适用于多种生成器架构和学习目标,支持配对和非配对数据。项目开源了预训练模型、演示和教程,便于研究和应用。
amused-256 - 轻量且高效的文本到图像生成工具
AmusedGithubHuggingface图像生成开源项目文本到图像模型训练优化轻量模型
amused-256是一款基于muse架构的轻量级文本到图像模型,适用于快速大量生成图像的应用。通过并行解码和简化的采样步骤,提高了生成效率。模型使用优化的CLIP文本编码器,共803M参数,较原有的3B参数模型更为小巧。尽管模型体积小,生成图像质量略为降低,但在快速迭代和特定应用场景中仍有出色表现。amused-256允许在简单数据集上进行快速微调,利用最小计算资源来优化训练效果,非常适合资源有限的快速验证任务。
LLM-groundedDiffusion - 优化文本到图像合成的提示理解能力
GPT-4GithubHuggingFaceLLM-grounded DiffusionStable DiffusionTMLR开源项目
本项目通过将大型语言模型(LLM)与文本到图像扩散模型结合,提高了提示理解能力。LLM负责解析文本请求,生成中间表示如图像布局,最终通过稳定扩散模型生成高质量图像。项目支持多种生成方法和开源模型,用户可自行设置实现自托管,从而节约API调用成本。项目更新频繁,包括支持高分辨率生成和集成SDXL精炼器等功能。
CogView - 中文文字生成逼真图像,支持英文和中文输入
CogViewGithubImageRewardNeurIPS 2023text-to-imagetransformer开源项目
CogView是一个基于4B参数预训练的转换器,用于生成通用领域的文本到图像。最新版本CogView2显著提升了生成速度,并扩展支持英文输入。用户可以通过Github和Wudao平台体验并下载预训练模型。项目还包含超分辨率和图像到文本转换功能,并提供详细的设置和运行指南。该项目获得NeurIPS 2021认可,并推荐使用PB-relax和Sandwich-LN技术稳定训练大型转化器。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号