Project Icon

sysidentpy

非线性系统识别和时序预测的Python工具库

SysIdentPy是一个开源Python库,专注于NARMAX模型及其变体的系统识别。该库提供先进的模型结构选择和参数估计技术,支持多种基函数,并可与神经网络和机器学习算法集成。它为时间序列分析和动态系统建模提供了灵活易用的框架,适用于构建动态非线性模型。

dtw-python - 实现动态时间规整算法的Python包
DTWGithubPython包动态时间规整开源项目时间序列分析模式识别
dtw-python是一个实现动态时间规整(DTW)算法的Python包。它支持任意局部和全局约束、快速本地代码执行、多种绘图样式等功能。该包提供计算对齐、绘制对齐和规整函数、表示步骤模式等方法,适用于经济计量学、化学计量学和时间序列挖掘中的分类和聚类任务。它是R语言DTW包的Python等效实现,采用GPL开源许可证发布。最新版本为X.X.X,详细文档可参考项目官网 https://dynamictimewarping.github.io。
PySCIPOpt - Python与SCIP优化套件的桥梁
GithubPySCIPOptPythonSCIP优化开源项目接口
PySCIPOpt是一个Python接口库,用于访问SCIP优化套件。它能通过Python构建和求解数学优化模型,支持开发自定义插件如定价器和启发式算法。PySCIPOpt安装简便,易于使用,功能全面,适用于多种优化问题。项目定期更新,文档完善,为Python编程和高性能优化求解提供了有效连接。
imodels - 一款提供易用且兼容的透明、简洁预测模型的集成scikit-learn的Python库
GithubPythonimodelsscikit-learn开源项目机器学习解释模型
imodels,一款集成scikit-learn的Python库,提供易用且兼容的透明、简洁预测模型。它应用最新的解释性模型技术,旨在提高机器学习的计算效率和预测精准度。包含imodelsX模块以支持NLP领域,且拥有完善的教程和文档,满足多样化应用需求。
PyPCAPKit - Python网络数据包解析与分析库
GithubPCAP文件PyPCAPKitPython库协议分析开源项目网络数据包分析
PyPCAPKit是一个开源的Python网络数据包解析和分析库,提供PCAP文件的提取、构建和分析功能。相比其他PCAP文件提取器,它能提供更详细的数据包信息和更符合Python风格的接口。该库支持Scapy、DPKT和PyShark等多种提取引擎,可加速处理速度。PyPCAPKit适用于Python 3.6及以上版本,支持通过pip安装。
Auto_TS - 自动构建和选择多种时间序列模型的高效工具
Auto_TSGithubProphet开源项目时间序列模型自动化机器学习预测
Auto_TS是一个时间序列自动建模工具,支持ARIMA、SARIMAX、VAR、分解模型和机器学习模型等多种技术。它能自动构建和选择最佳模型,适用于不同频率的数据,并提供灵活的参数设置。Auto_TS支持交叉验证和预测功能,简化了建模过程,提高了效率。该工具适合数据分析人员使用,可通过简单的代码实现复杂的时间序列建模任务。
PySyft - 隐私保护下的数据科学:无需获取数据副本使用非公开信息
GithubPySyft开源项目数据分析数据科学数据隐私远程数据科学
PySyft革新数据科学,允许在不查看或复制数据的情况下使用非公开信息。通过连接Datasite,数据所有者控制数据保护,数据科学家直接运行Python代码进行统计分析和机器学习,支持Linux、macOS、Windows、Docker和Kubernetes,适用于多种开发环境。
python-glmnet - Python实现的正则化回归库
GLMNETGithubPythonScikit-Learn开源项目机器学习正则化回归
python-glmnet是一个实现正则化回归模型的Python库。它封装了R语言glmnet包的Fortran库,提供线性和逻辑回归功能。该库兼容Scikit-Learn的API,支持稀疏矩阵,具有交叉验证和自动选择最佳正则化参数的功能。可通过conda或pip安装,适用于需要实现Lasso或ElasticNet回归的数据科学项目。
gluonts - 基于深度学习的概率时间序列建模工具包
GithubGluonTSPython开源项目时间序列预测概率模型深度学习
GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。
NiaPy - 轻量级自然启发算法Python框架
GithubNiaPyPython优化算法开源软件开源项目自然启发算法
NiaPy是一个开源的Python微框架,用于构建和评估自然启发算法。它内置了多种优化问题和算法实现,通过简洁的接口实现算法比较和结果导出。NiaPy支持pip、conda等安装方式,兼容主流Linux发行版,适用于Python 3.9及以上版本。该框架为优化研究和应用提供了一个灵活高效的开发平台。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号