Project Icon

Awesome-Foundation-Models-in-Medical-Imaging

医学影像基础模型研究文献资源汇总

本项目汇总了医学影像领域基础模型相关的研究文献和资源。内容涵盖文本提示模型和视觉提示模型两大类,包括对比学习、对话式、生成式等多种模型。项目提供论文标题、作者、发表时间和链接等详细信息。这一资源集合为医学影像基础模型研究提供了全面的参考材料。

:fire:Awesome Foundational Models in Medical Imaging :fire:

Awesome License: MIT PRs Welcome

🔥🔥 This is a collection of awesome articles about foundation models in medical imaging🔥🔥

Our survey paper on arXiv: Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision ❤️

Citation

If you find our work useful in your research, please consider citing:

@article{azad2023foundational,
  title={Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision},
  author={Azad, Bobby and Azad, Reza and Eskandari, Sania and Bozorgpour, Afshin and Kazerouni, Amirhossein and Rekik, Islem and Merhof, Dorit},
  journal={arXiv preprint arXiv:2310.18689},
  year={2023}
}

Overview

Foundation models, large-scale pre-trained deep learning models adaptable to various tasks, have gained interest across deep learning applications. In the medical imaging field, they enable contextual reasoning, generalization, and prompt-based task adjustments. This survey provides an overview of foundation models in medical imaging, covering fundamental concepts, taxonomy based on training strategies, application domains, imaging modalities, and more. It highlights practical use cases, applications, future directions, and challenges, including interpretability, data management, computational needs, and contextual comprehension.

Image Description

We strongly encourage authors of relevant works to make a pull request and add their paper's information.

Contents

Survey Papers

Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision🔥
Bobby Azad, Reza Azad, Sania Eskandari, Afshin Bozorgpour, Amirhossein Kazerouni, Islem Rekik, Dorit Merhof
[28th Oct., 2023] [arXiv, 2023]
[Paper]

Papers

Textual Prompted Models

Contrastive

Enhancing Representation in Radiography-Reports Foundation Model: A Granular Alignment Algorithm Using Masked Contrastive Learning
Weijian Huang, Cheng Li, Hao Yang, Jiarun Liu, Shanshan Wang
[12th Sep., 2023] [arXiv, 2023]
[Paper]

A visual-language foundation model for pathology image analysis using medical Twitter
Zhi Huang, Federico Bianchi, Mert Yuksekgonul, Thomas J. Montine, James Zou
[17th Aug., 2023] [Nature Medicine, 2023]
[Paper] [GitHub]

ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders
Shawn Xu, Lin Yang, Christopher Kelly, Marcin Sieniek, Timo Kohlberger, Martin Ma, Wei-Hung Weng, Atilla Kiraly, Sahar Kazemzadeh, Zakkai Melamed, Jungyeon Park, Patricia Strachan, Yun Liu, Chuck Lau, Preeti Singh, Christina Chen, Mozziyar Etemadi, Sreenivasa Raju Kalidindi, Yossi Matias, Katherine Chou, Greg S. Corrado, Shravya Shetty, Daniel Tse, Shruthi Prabhakara, Daniel Golden, Rory Pilgrim, Krish Eswaran, Andrew Sellergren
[2nd Aug., 2023] [arXiv, 2023]
[Paper]

Knowledge Boosting: Rethinking Medical Contrastive Vision-Language Pre-Training
Xiaofei Chen, Yuting He, Cheng Xue, Rongjun Ge, Shuo Li, Guanyu Yang
[14th Jul., 2023] [MICCAI, 2023]
[Paper] [GitHub]

Text-guided Foundation Model Adaptation for Pathological Image Classification
Yunkun Zhang, Jin Gao, Mu Zhou, Xiaosong Wang, Yu Qiao, Shaoting Zhang, Dequan Wang
[27th Jul., 2023] [MICCAI, 2023]
[Paper] [GitHub]

Visual Language Pretrained Multiple Instance Zero-Shot Transfer for Histopathology Images
Ming Y. Lu, Bowen Chen, Andrew Zhang, Drew F.K. Williamson, Richard J. Chen, Tong Ding, Long Phi Le, Yung-Sung Chuang, Faisal Mahmood
[13th Jun., 2023] [CVPR, 2023]
[Paper]

Large-Scale Domain-Specific Pretraining for Biomedical Vision-Language Processing
Sheng Zhang, Yanbo Xu, Naoto Usuyama, Jaspreet Bagga, Robert Tinn, Sam Preston, Rajesh Rao, Mu Wei, Naveen Valluri, Cliff Wong, Matthew P. Lungren, Tristan Naumann, Hoifung Poon
[2nd Mar., 2023] [arXiv, 2023]
[Paper] [GitHub]

Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts
Zhihong Chen, Shizhe Diao, Benyou Wang, Guanbin Li, Xiang Wan
[17th Feb., 2023] [arXiv, 2023]
[Paper] [GitHub]

Learning to Exploit Temporal Structure for Biomedical Vision Language Processing
Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, Ozan Oktay
[11th Jan., 2023] [CVPR, 2023]
[Paper]

CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection
Jie Liu, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A Landman, Yixuan Yuan, Alan Yuille, Yucheng Tang, Zongwei Zhou
[2nd Jan., 2023] [ICCV, 2023]
[Paper] [GitHub]

MedCLIP: Contrastive Learning from Unpaired Medical Images and Text
Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, Jimeng Sun
[18th Oct., 2022] [EMNLP, 2022]
[Paper] [GitHub]

Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning
Ekin Tiu, Ellie Talius, Pujan Patel, Curtis P. Langlotz, Andrew Y. Ng, Pranav Rajpurkar
[15th Sep., 2022] [Nature Biomedical Engineering, 2022]
[Paper]


Conversational

Radiology-Llama2: Best-in-Class Large Language Model for Radiology
Zhengliang Liu, Yiwei Li, Peng Shu, Aoxiao Zhong, Longtao Yang, Chao Ju, Zihao Wu, Chong Ma, Jie Luo, Cheng Chen, Sekeun Kim, Jiang Hu, Haixing Dai, Lin Zhao, Dajiang Zhu, Jun Liu, Wei Liu, Dinggang Shen, Tianming Liu, Quanzheng Li, Xiang Li
[29th Aug., 2023] [arXiv, 2023]
[Paper]

ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data and Comprehensive Evaluation
Guangyu Wang, Guoxing Yang, Zongxin Du, Longjun Fan, Xiaohu Li
[16th Jun., 2023] [arXiv, 2023]
[Paper]

XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models
Omkar Thawkar, Abdelrahman Shaker, Sahal Shaji Mullappilly, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Jorma Laaksonen, Fahad Shahbaz Khan
[13th Jun., 2023] [arXiv, 2023]
[Paper] [GitHub]

LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day
Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon, Jianfeng Gao
[1st Jun., 2023] [arXiv, 2023]
[Paper] [GitHub]

PMC-LLaMA: Towards Building Open-source Language Models for Medicine
Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, Weidi Xie
[27th Apr., 2023] [arXiv, 2023]
[Paper] [GitHub]

Visual Med-Alpaca: A Parameter-Efficient Biomedical LLM with Visual Capabilities
Chang Shu, Baian Chen, Fangyu Liu, Zihao Fu, Ehsan Shareghi, Nigel Collier
[11th Apr., 2023] [GitHub, 2023]
[GitHub]

ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge
Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, You Zhang
[24th Mar., 2023] [Cureus, 2023]
[Paper] [GitHub]

DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4
Zhengliang Liu, Xiaowei Yu, Lu Zhang, Zihao Wu, Chao Cao, Haixing Dai, Lin Zhao, Wei Liu, Dinggang Shen, Quanzheng Li, Tianming Liu, Dajiang Zhu, Xiang Li
[20th Mar., 2023] [arXiv, 2023]
[Paper] [GitHub]

ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using Large Language Models
Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang, Dinggang Shen
[14th Feb., 2023] [arXiv, 2023]
[Paper]


Generative

Med-Flamingo: a Multimodal Medical Few-shot Learner
Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Cyril Zakka, Yash Dalmia, Eduardo Pontes Reis, Pranav Rajpurkar, Jure Leskovec
[27th Jul., 2023] [arXiv, 2023]
[Paper] [GitHub]

Clinical-BERT: Vision-Language Pre-training for Radiograph Diagnosis and Reports Generation
none
[22nd Jun., 2022] [AAAI, 2022]
[Paper]

Towards Expert-Level Medical Question Answering with Large Language Models
Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam, Vivek Natarajan
[16th May., 2023] [arXiv, 2023]
[Paper]


Hybrid

MedBLIP: Bootstrapping Language-Image Pre-training from 3D Medical Images and Texts
Qiuhui Chen, Xinyue Hu, Zirui Wang, Yi Hong
[18th May., 2023] [arXiv, 2023]
[Paper] [GitHub]

Vision-Language Model for Visual Question Answering in Medical Imagery
none
[22nd Feb., 2023] [Bioengineering, 2023]
[Paper]


Visual Prompted Models

Adaptations

Virchow: A Million-Slide Digital Pathology Foundation Model
*Eugene Vorontsov, Alican Bozkurt, Adam Casson, George Shaikovski, Michal Zelechowski, Siqi

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号