Project Icon

Local-LLM-User-Guideline

本地大语言模型深度解析 理论与实践全方位探讨

本项目提供Local-LLM全面指南,深入剖析大语言模型背景、开源LLM利弊、在线与本地LLM对比及应用场景。详述LLM运作机制、应用差异和在线使用挑战。指南助力用户选择合适LLM方案,尤其适合本地部署LLM的开发者和研究人员参考。

English    中文版

If you are very familiar with local LLM, welcome to join our discussion! Discord: https://discord.gg/4AQuf2ctav

Updated

2024-3-03: Version 0.3 adds an introduction to commonly used terms.

2024-2-24: Version 0.2 adds an introduction to the Gemma and Llava models, an introduction to the GPT4ALL software, and an introduction to LLM selection.

2024-2-17: Version 0.1.

Local LLM User Guide 0.3

1. Background

1.1 What are LLMs?

LLMs, or Large Language Models, are advanced models built based on artificial intelligence and machine learning techniques to understand and generate natural language text. These models are able to perform a variety of language-related tasks by analyzing and learning from massive amounts of textual data and mastering the complex properties of language such as structure, syntax, semantics, and context. The capabilities of LLMs include, but are not limited to, text generation, question and answer, text summarization, translation, and sentiment analysis.

LLMs such as GPT, LLama, Mistral series, etc., enable these models to capture the deeper associations and meanings between texts by means of technical architectures for deep learning, such as Transformer. The models are first pre-trained on a wide range of datasets to learn the general features and patterns of the language, and can then be fine-tuned for specific tasks or domains to improve their performance in particular applications.

The pre-training phase equips the LLMs with a large amount of linguistic and world knowledge, while the fine-tuning phase enables the models to achieve higher performance on specific tasks. This training approach gives LLMs the flexibility and adaptability to handle a wide range of linguistic tasks, enabling them to provide accurate and diverse information and services to users.

1.2 Differences between LLMs and applications

Openness

LLMs: Through a process of deep learning pre-training and fine-tuning, LLMs acquire extensive knowledge gained from massive amounts of Internet text, enabling them to understand and generate a wide range of content types, including text, images, audio, video, and 3D material. This ability allows LLMs to demonstrate superior diverse information processing capabilities when dealing with a variety of topics and knowledge domains.

Applications: Applications, on the other hand, are designed to meet specific needs, such as social interaction, news access, e-commerce, etc., and are typically less open and diverse in content than LLMs. each application is built around its core functionality, providing a user interface and experience optimization, but the range of information and services that the user accesses is limited by the purpose for which the application was designed and the functionality for which it was defined.

Accuracy

LLMs: LLMs are capable of generating text on a wide range of topics and tasks by analyzing and learning from massive textual data, and mastering the structure, semantics, and context of language. However, the accuracy of these models not only relies on rich and diverse training data and advanced model architectures, but also faces the challenges of update lag and "illusion" problems. When dealing with specialized or up-to-date information, LLMs may produce unsubstantiated content, especially when there is a lack of sufficient context or when the information is rapidly changing. Therefore, when using information generated by these models for decision-making and analysis, additional validation is recommended to improve accuracy and reliability.

Applications: The accuracy of information in applications is highly dependent on the curation and management of content, which often involves the active selection and provision of specialized individuals or teams. For example, in specialized domains such as healthcare and financial investment apps, developers and specialists invest significant resources to ensure that the information provided is accurate, reliable, and up-to-date. While this approach improves the quality of information within a specific domain, it also means that the scope of information that users are exposed to is limited by the breadth of knowledge and choices made by these specialized teams. As a result, while applications may provide highly accurate information within a given domain, their content coverage and perspective is constrained by human choice and the limitations of specialized domains.

Predictability

LLMs: LLMs are less predictable because the answers they generate may vary depending on the diversity of the training data and the complexity of the model's understanding. Users may receive multiple possible answers without explicit instructions, or unexpected responses in a given context, or worse, fail to proceed to the next round of interaction. This uncertainty stems from the design and operational mechanisms of the model, and is especially evident when dealing with fuzzy queries or complex problems.

Applications: Applications typically provide a higher degree of predictability because they are designed to meet specific needs and purposes, and their functionality, operational flow, and user interface are designed to provide a consistent and predictable user experience. Applications reduce uncertainty during operation through explicit user instructions and fixed interaction logic, allowing users to anticipate what their actions will result in.

Availability

LLMs: LLMs currently have a large number of usability issues, including and not limited to the following, in addition to the phantom issues mentioned above:

  1. Answer to the wrong question: LLMs, when dealing with complex or ambiguous queries, may sometimes provide answers that do not match the user's expectations. This phenomenon is usually due to the model's insufficient understanding of the question or misinterpretation of the intent of the query. Although model training covers a large amount of data to improve understanding of natural language, difficulties may still be encountered in understanding context-specific or domain-specific language.
  2. Response time: Users may encounter long response times when interacting with LLMs, especially when performing complex generative tasks or processing a large number of data requests. This not only affects user experience but also limits the application of LLMs in real-time interaction scenarios. The prolonged response time is mainly due to the high computational demands of the model and the high server load.
  3. Processing capacity constraints: Despite the theoretical capabilities of LLMs, in practice, their processing capacity is constrained by hardware resources, algorithmic efficiency and availability. For example, large-scale concurrent requests may lead to performance degradation, especially in resource-constrained environments. In addition, LLMs may be less efficient and accurate when processing long texts or complex tasks that require deeper understanding.
  4. Limitations of self-updating: LLMs are usually pre-trained on fixed datasets, which means that their knowledge after training is static. Although it is possible to update the model by periodic re-training, this approach may not be sufficient to capture the latest information or trends in real-time, thus limiting to some extent the effectiveness of the model's application in fast-changing domains (e.g., news, technology, etc.).

Applications: Thanks to a long history of accumulation and innovation in the field of software development and design, most applications have achieved a high degree of user-friendliness and stability. Designers and developers are able to build applications relying on proven platforms and frameworks, while widely adopted user experience design principles ensure that applications meet users' needs and expectations. In addition, through continuous user feedback and iterative development, apps are able to fix bugs and optimize performance in a timely manner, thus improving user satisfaction and overall app usability.

1.3 What are the advantages and disadvantages of open source LLMs?

Advantages

  1. Flexibility and adaptability: Open source LLMs provide models of different sizes, enabling them to be deployed on a wide range of devices, from small devices such as Raspberry Pi's and cell phones, to personal computers and even server clusters.
  2. Reducing dependencies: The use of open source LLMs can reduce dependency on specific vendors, such as OpenAI, to some extent. This not only increases the accessibility of the technology, but also promotes innovation and autonomy.
  3. Privacy protection: Open source LLMs allow users to deploy and use models in local or private cloud environments, which helps to minimize the risk of data leakage and provides a higher level of security for applications that handle sensitive or private data.
  4. Customizability: Open-source models can be fine-tuned to meet specific needs, enabling users to optimize the model for a particular task or data set, thus improving its effectiveness and accuracy.
  5. Community support: Open source LLMs often benefit from the support of an active developer and research community. Such communities not only provide technical support and shared solutions, but also facilitate rapid innovation of new features, optimizations and application scenarios.
  6. High Transparency: The open source model provides visibility into the algorithms and data processing flows, enabling technical users and developers to review how the model works.

Disadvantages

  1. Limitations of underlying models and datasets: The upper and lower limits of performance of open source LLMs depend heavily on the underlying models and datasets behind them.The models provided by vendors such as Meta, Mistral, etc., while powerful, may not be suitable for all types of tasks, especially in those areas that require highly specialized knowledge.

  2. Resource and technical thresholds: While open source LLMs offer great flexibility, deploying and maintaining these models requires considerable hardware resources and technical expertise. This can be a challenge for individuals or small teams that lack these resources or technical skills.

  3. Lack of harmonized standards: There is a wide variety of LLMs in the open source community, which may use different architectures, training datasets and interfaces. While this diversity fosters innovation, it also creates complexity for users to select appropriate models and tools.

  4. Stability issues: Locally deployed open-source models may encounter hardware limitations and software compatibility issues, resulting in unstable operation. This instability may affect the reliability of the model and the user experience.

  5. Processing speed issues: Model inference can be very slow when using only the CPU, especially when processing large models or complex tasks. This not only extends the processing time, but may also limit the use of the model in real-time or application scenarios that require high responsiveness.

  6. Output quality fluctuations and controllability of content generation: Open-source LLMs may experience fluctuations in the quality of output when dealing with specific language types or complex, borderline cases, sometimes generating irrelevant or meaningless responses. At the same time, when sensitive or demanding highly accurate content needs to be generated, these models may have difficulty in precisely controlling the quality and direction of the output, especially in the absence of careful supervision and customized fine-tuning, which may result in substandard output content or failure to meet specific expectations.

1.4 Differences between on-line and local LLMs

LLLMs in this context refers specifically to open source models such as Llama, Mistral, GLM, etc.

Availability

Online LLMs: On-line deployed LLMs provide instant access and high availability thanks to the pre-configured LLM and RAG (Retrieval Augmented Generative Model) environments on cloud servers by SaaS (Software as a Service) providers. Users don't have to worry about hardware configuration or installation process and can start using these models immediately for text generation, Q&A and other tasks. This deployment method is particularly suitable for users without specialized technical backgrounds or for organizations that need to deploy solutions quickly.

Local LLMs: Locally deployed LLMs require a certain level of technical knowledge on the part of the user, including the ability to install, configure, and optimize the model.The inference performance and speed of LLMs is directly limited by an individual's or an organization's hardware configurations, such as processor, memory, and storage space. Additionally, while local deployment provides users with greater control, it lacks the encapsulation of advanced functionality like RAG and users may need to perform additional development work on their own.

Cost

Online LLMs: For individual users, the on-demand billing model of the online LLMs service offers great flexibility and the advantage of a lower entry barrier. Individual users can choose the appropriate service plan according to their actual needs and frequency of use, avoiding a high initial investment. This is especially beneficial for users who only occasionally need to use the language model for specific projects or research. However, if individual users frequently use these services for large amounts of data processing, the costs may accumulate gradually, especially when using advanced features or large-scale datasets. For those individual users who need to use language modeling services on a long-term, ongoing basis, it is important to periodically evaluate the total cost.

Local LLMs: For individual users, choosing to deploy LLMs locally means a one-time investment in high-performance computing hardware. While this may increase the financial cost for some users, it provides long-term cost-effectiveness, especially for those with sustained high-intensity usage requirements. Local deployment avoids duplicate service costs, and once the equipment is in use, the additional operating costs are relatively low, except for possible maintenance and upgrades. In addition, individual users are able to gain greater control and customization through local deployment, which may be particularly valuable to researchers or developers. However, it is important to note that local deployment also means that users must have some technical skills to configure and maintain the system.

Privacy

Online LLMs: When using online LLMs, user data needs to be transferred to a cloud server for processing, which triggers considerations of data privacy and security. While many SaaS providers adopt strong data protection measures and promise to protect user data from misuse or disclosure, the process still requires a foundation of user trust in the provider's data handling and privacy policies.

Local LLMs: Compared to the online model, locally deployed LLMs provide a higher level of security in terms of privacy protection, mainly because data processing is done on the user's private devices or internal servers, eliminating the need for data to be outsourced. This deployment method gives the user much more control over the data and reduces the risk of data leakage.

Dependence and control

Online LLMs: Using online services, users rely on the service provider to ensure the availability and performance of the service. This model simplifies the usage process by allowing the user to focus on the application of the model rather than its maintenance. However, it also means that the user's direct control is limited in terms of system prompting, context management, and model response customization. While online services offer some degree of configuration options, they may not be sufficient to meet all specific needs, especially in scenarios that require highly customized output.

Local LLMs: Locally deployed models allow users to enjoy a higher level of control, including management of data processing, model configuration and system security. Users can deeply customize system prompts and contextual processing policies as needed, which can be important in specific application scenarios. However, this increased control and flexibility comes with higher technical requirements and possible initial setup complexity. While local deployment allows for a high degree of customization, it also requires users to have the appropriate technical skills to implement these customized solutions.

Transparency

Online LLMs: Online LLMs services are provided by third parties and may raise transparency concerns for some users in terms of how the models work and how the data is processed. Service providers typically strive to provide documentation on model training, data processing, and privacy policies, among other things, with the intent of increasing transparency. However, due to commercial confidentiality and operational complexity, users may not have access to full details of a model's internal mechanisms. This requires users to trust the service provider and rely on the information and controls it provides for data security and privacy.

Local LLMs: Locally deployed LLMs provide a higher degree of transparency by allowing users direct access to the model. Users can inspect, modify and optimize the models themselves, thereby gaining a deeper understanding of how they work and adapting their behavior to their needs. This direct control ensures complete understanding of the model and the ability to customize it, and is particularly suited to organizations that have high requirements for data security, privacy protection, or need to comply with specific regulations. However, it also means greater responsibility on the part of the user, including maintaining the transparency of the model and ensuring its compliance with ethical and legal standards.

Offline

Online LLMs: Unavailable

Local LLMs: It works

1.5 What are the problems with using online LLMs?

When using online LLMs, we face challenges on multiple levels, and these issues, ranging from personal data privacy to model performance and cost to content integrity and the selection and application of retrieval-enhanced generative modeling (RAG) strategies, constitute a set of critical issues that require the joint attention of users and service providers.

Question 1: Personal data privacy

The privacy of personal data becomes a significant point of concern during the use of online LLMs. Users' interactions with LLMs, as well as uploaded documents, may be collected by service providers for model fine-tuning and optimization.

Question 2: Model performance and cost

Service providers may use LLMs of different sizes in order to balance cost and performance. smaller models (e.g., 7B or 13B parameters), while reducing computational resource consumption and improving response speed, may not have sufficient inference power to handle complex queries or generate high-quality text. It may be difficult for users to be informed of the size and performance of the model used when choosing a service, leading to discrepancies between the results and expectations in real-world applications. This opacity may affect users' experience and satisfaction.

Issue 3: Content integrity

For processing long documents, there is a question of whether LLM is able to capture and understand the entire document content in its entirety. Due to technical limitations, some services may only process a part of the document, e.g., analyzing only the first few hundred words. This processing may cause the LLM to miss key information, which affects the accuracy and relevance of the generated content. Users may not be able to know whether their submission has been processed in its entirety, which in turn raises questions about the reliability of the results.

Problem 4: Retrieval of an enhanced generative model (RAG) strategy

The cutting methods and callback strategies of RAGs directly affect the effectiveness of LLMs, especially when dealing with queries that require extensive knowledge retrieval. Different cutting methods and callback strategies determine the way LLM accesses and integrates information, which in turn affects the accuracy and completeness of the final generated answer. If these strategies are not properly selected or optimized, the LLM may not be able to see or utilize the relevant information to generate the best answer. Users typically have no control over or knowledge of these internal processing details, which increases outcome uncertainty.

2. Which theoretical scenarios are suitable for using native open source LLMs?

  • The theoretical scenarios are labeled here because there are more practical problems with current open source LLMs, but these problems will be gradually overcome. *

1. Does my business scenario have high volume, high frequency data requests?

If you need to analyze and process a large number of

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号