Project Icon

UniSeg

多模态3D医学图像通用分割模型

UniSeg是一个基于提示驱动的通用分割模型,可对多模态、多领域的3D医学图像进行多器官、肿瘤和椎骨分割。作为强大的分割模型和特征学习器,UniSeg提供完整代码实现、预训练模型及详细使用说明。项目涵盖数据准备、预处理、训练和测试等步骤。在MICCAI SegRap 2023比赛中,UniSeg在两项任务中均获得第二名,展现了其在医学图像分割领域的出色表现。

nnUNet - 自适应医学图像分割深度学习框架
GithubnnU-Net医学影像图像分割开源项目深度学习自动化
nnUNet是一个自适应深度学习框架,专注于医学图像分割。它可自动分析训练数据并优化U-Net分割流程,无需专业知识即可使用。支持2D和3D图像,处理多种模态和输入通道,并能应对不平衡类别分布。在多个生物医学图像分割挑战中表现出色,广泛用作基线方法和开发框架。适用于领域科学家和AI研究人员,为医学图像分析提供强大支持。
SegVol - 突破性的通用交互式三维医学影像分割模型
3D建模CT扫描GithubSegVol人工智能医学图像分割开源项目
SegVol是一个创新的通用交互式三维医学影像分割模型,支持点、框和文本提示输入。该模型在96,000个CT扫描数据集上训练,可分割超过200个解剖类别。SegVol开源了推理代码、训练代码、模型参数以及预训练的ViT参数。通过内部和外部验证,SegVol展现出优秀的分割性能,为医学影像分析提供了新的解决方案。
SOTA-MedSeg - 医学图像分割前沿挑战与顶级方法概览
GithubMICCAIU-Net医学图像分割开源项目挑战赛深度学习
SOTA-MedSeg项目汇总了医学图像分割领域的前沿挑战和顶级方法。涵盖头部、颈部、心脏和腹部等多个身体部位的分割任务,包括脑肿瘤、主动脉瘤和肾脏肿瘤等疾病。项目列出各大挑战赛的最佳方法及性能指标,提供相关论文和代码链接,是了解医学图像分割最新进展的综合资源。
TotalSegmentator - 全身器官自动分割工具适用于CT和MR影像
CT图像分割GithubMR图像分割TotalSegmentator医学影像开源项目深度学习
TotalSegmentator是一款自动分割CT和MR图像中主要解剖结构的开源工具。基于大规模数据集训练,可在不同设备和协议的医学影像上实现稳健分割,支持117个CT类别和56个MR类别。工具提供多种子任务,如肺血管、体表和脑出血等特定器官分割。支持命令行和Python API调用,可在CPU或GPU上运行,并提供Docker容器部署。
SynthSeg - 通用深度学习脑部MRI分割工具 适用多种对比度和分辨率
SynthSeg深度学习脑部扫描分割
SynthSeg是一种深度学习脑部MRI分割工具,可处理不同对比度和分辨率的扫描。无需重新训练即可适用于各年龄段和健康状况的人群,可处理预处理或未预处理的扫描,并能应对白质病变。SynthSeg 2.0版本增加了皮层分区、自动质量控制和颅内容积估计功能,提高了其在分析大规模异质临床脑MRI数据集中的实用性。
x-unet - 集成高效注意力机制的先进U-Net框架
GithubU-Net图像分割开源项目深度学习神经网络计算机视觉
x-unet是一个基于U-Net架构的开源项目,融合了高效注意力机制和最新研究成果。支持2D和3D图像处理,提供嵌套U-Net深度和上采样特征图合并等灵活配置。适用于生物医学图像分割和显著对象检测等任务,是一个功能强大的深度学习工具。
MT-UNet - 融合Transformer和UNet的医学图像分割新模型
GithubMT-UNet医学图像分割开源项目数据集准备权重文件模型训练
MT-UNet是一种结合Transformer和UNet优势的医学图像分割模型。该模型在Synapse和ACDC数据集上分别达到79.20%和91.61%的DSC评分。MT-UNet通过混合transformer结构实现多尺度特征融合,为医学图像分析提供新思路。项目开源代码和预训练权重,便于研究者复现结果和深入研究。
SAM-Med2D - 医学图像分割新突破 SAM-Med2D模型
GithubSAM-Med2D医学图像分割开源项目数据集模型训练模型评估
SAM-Med2D是基于Segment Anything Model的医学图像分割模型,在包含4.6M图像和19.7M掩码的大规模数据集上进行微调。该项目涵盖10种医学数据模态、4种解剖结构和病变,以及31个主要人体器官。SAM-Med2D在多个测试集上表现优秀,尤其在点提示和边界框提示方面效果显著,为医学图像分割领域提供了新的解决方案。
UCTransNet - 融合U-Net与Transformer的医学图像分割网络
GithubTransformerU-NetUCTransNet医学图像分割开源项目深度学习
UCTransNet是一种结合U-Net和Transformer优势的医学图像分割网络。它通过Channel Transformer模块替代U-Net的跳跃连接,从通道维度优化特征融合。该模型在GlaS和MoNuSeg等数据集上表现优异,为医学影像分析提供新思路。项目开源代码实现和预训练模型,并提供详细使用说明,方便研究者探索和应用。
urban_seg - 针对初学者的遥感图片语义分割项目
Githubunicom模型urban_seg多GPU训练开源项目语义分割遥感图片
一个针对初学者的遥感图片语义分割项目,使用在4亿张图片上预训练的unicom模型。该模型在遥感分割中表现出色,仅需4张图片训练即可取得良好效果。提供简单的单GPU和多GPU训练代码,帮助快速上手并提升性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号