Project Icon

LoftQ

大型语言模型低资源量化微调新方法

LoftQ是一种为大型语言模型设计的量化微调方法。它通过寻找最佳的量化LoRA初始化,实现有限GPU资源下的高效模型微调。LoftQ支持LLAMA、Falcon、Mistral等主流模型,提供相关工具和示例代码。在WikiText-2和GSM8K等任务上,LoftQ展现出优秀性能,为低资源环境中的LLM应用开发创造了新可能。

Llama-3.1-Nemotron-lorablated-70B-i1-GGUF - Llama-3.1的矩阵量化技术优化模型性能
GithubHugging FaceHuggingfaceLlama-3.1-Nemotron-lorablated-70BQuants使用方法开源项目模型量化
该项目提供了一系列用于Llama-3.1-Nemotron模型的加权和矩阵量化文件,旨在优化模型的性能和运行效率。这些文件在缩小模型尺寸的同时保持了质量,适用于多种场景。用户可依据需求选择适合的量化级别,具体使用说明请参阅指南。项目的成功得益于各方支持和资源,推动了更多高质量量化文件的开发,助力广泛的研究和应用。
Qwen2.5-7B-Instruct-GGUF - Qwen2.5-7B-Instruct的多样化量化方案增强模型适应性
ARM芯片GithubHuggingfaceQwen2.5-7B-Instruct开源项目性能优化模型训练数据集量化
项目采用llama.cpp的最新量化方案对Qwen2.5-7B-Instruct模型进行优化,提供灵活的量化格式以匹配各类硬件环境。更新的上下文长度管理与先进的分词器,无论选择传统的Q-K量化还是新兴的I-quant,各种档次的文件都能帮助设备实现性能与速度的平衡。尤其是对ARM架构的专门优化,即便在低RAM环境下,用户也能凭借有限的资源获得可行的使用体验。
Phi-3-mini-4k-instruct - 高效节省内存的模型微调策略,快速实现量化优化
GithubHuggingfacePhi-3免费微调内存优化开源项目机器学习模型量化模型
此项目通过Unsloth量化技术,提供高效的Mistral平台大模型微调方案,速度提升至2-5倍,内存占用降低至50-70%。提供的Colab笔记本支持Phi-3、Llama 3、Gemma 2等多种模型,简单易用,适合初学者。用户可以节省计算资源,并将微调后的模型导出至GGUF或上传至Hugging Face,方便成果共享。
StarCoder2-7B-GGUF - 多种量化模型版本,提升代码生成性能与存储效率
GithubHuggingfaceLlamaEdgeStarCoder2代码生成开源项目模型模型压缩量化模型
此项目提供多种量化模型版本,旨在优化代码生成任务中的性能与存储效率。可选范围包括小容量、质量损失较大的版本到大容量、质量损失低的版本,以满足各种需求。Q4_K_M与Q5_K_M模型在质量与容量间表现出良好的平衡。该项目使用llama.cpp进行量化,适合空间与性能有特定需求的开发者。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
tiny-random-Llama-3-lora - 优化轻量级Llama-3模型的LoRA适配器
GithubHuggingfaceLlama-3LoRApeft参数高效微调开源项目模型模型适配器
本项目为tiny-random-Llama-3模型开发LoRA适配器。LoRA作为一种高效微调技术,能够大幅降低参数量和加速训练过程。研究人员和开发者可利用此适配器快速将tiny-random-Llama-3模型应用于特定任务,无需完整重训练。该工具为小型语言模型的应用研究提供了便利,有助于推动NLP领域的发展。
LLMtuner - 使用 LoRA、QLoRA 等最佳实践对 Llama、Whisper 和其他 LLM 进行微调
GithubLLMTunerLLM微调LlamaLoRAWhisper开源项目
LLMTuner 提供类 scikit-learn 接口,让用户便捷微调如 Llama、Whisper 等大型语言模型。通过 LoRA 和 QLoRA 等技术实现高效微调,内置推理功能和一键启动的交互式 UI,简化模型展示和共享。此外,LLMTuner 还支持未来在 AWS 和 GCP 等平台上的部署。欢迎加入 PromptsLab 社区,探索和讨论最新的开源模型调优技术。
Qwen2-0.5B-Instruct-GGUF - 高性能轻量级开源语言模型 支持多种量化等级
GGUF格式GithubHuggingfaceQwen2开源项目模型自然语言处理语言模型量化模型
Qwen2-0.5B-Instruct模型提供多种GGUF格式量化版本,从q2_k到q8_0不等。模型基于Transformer架构,使用SwiGLU激活和改进的分组查询注意力,支持多语言及代码处理。经过大规模预训练和监督微调,可通过llama.cpp部署,支持OpenAI API兼容调用。在WikiText困惑度测试中表现优秀,为轻量级开源语言模型应用提供了便利选择。
Qwen2.5-Math-72B-Instruct-GGUF - Llamacpp在Qwen2.5-Math代码量化中的应用
ARM芯片GithubHugging FaceHuggingfaceQwen2.5-Math-72B-Instruct开源项目性能模型量化
项目应用llama.cpp对Qwen2.5-Math模型进行量化,提供多种量化格式以适应不同硬件配置。更新包括改进的分词器,涵盖高至极低质量的量化文件,适用于不同RAM和VRAM需求,并支持在ARM芯片上运行。使用K-quant和I-quant等量化方法,有助于优化模型性能与速度。下载和安装可通过huggingface-cli实现,灵活快捷。
Qwen2.5-32B-Instruct-AWQ - 支持128K长文本的多语言量化大模型
GithubHuggingfaceQwen2.5人工智能多语言处理大语言模型开源项目模型量化模型
Qwen2.5-32B指令微调模型经AWQ量化后参数量达32.5B,显著增强了编程和数学计算能力。模型支持29种语言交互,可处理128K tokens长文本,具备结构化数据理解和JSON生成等核心功能。基于transformers架构开发,通过量化技术实现高效部署,适用于大规模AI应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号