Project Icon

parser

结构化预测和自然语言处理的Python工具包

SuPar是一个专注于结构化预测的Python库,实现了多种先进的句法和语义解析器。支持依存句法分析、成分句法分析和语义依存分析等任务,提供超过19种语言的预训练模型。此外,SuPar还包含多种经典结构化预测算法的高效实现。该库支持GPU加速,设计简洁易用,适用于自然语言处理研究和生产应用。

:rocket: SuPar

build docs release downloads LICENSE

A Python package designed for structured prediction, including reproductions of many state-of-the-art syntactic/semantic parsers (with pretrained models for more than 19 languages),

and highly-parallelized implementations of several well-known structured prediction algorithms.[^1]

Installation

You can install SuPar via pip:

$ pip install -U supar

or from source directly:

$ pip install -U git+https://github.com/yzhangcs/parser

The following requirements should be satisfied:

Usage

You can download the pretrained model and parse sentences with just a few lines of code:

>>> from supar import Parser
# if the gpu device is available
# >>> torch.cuda.set_device('cuda:0')  
>>> parser = Parser.load('dep-biaffine-en')
>>> dataset = parser.predict('I saw Sarah with a telescope.', lang='en', prob=True, verbose=False)

By default, we use stanza internally to tokenize plain texts for parsing. You only need to specify the language code lang for tokenization.

The call to parser.predict will return an instance of supar.utils.Dataset containing the predicted results. You can either access each sentence held in dataset or an individual field of all results. Probabilities can be returned along with the results if prob=True.

>>> dataset[0]
1       I       _       _       _       _       2       nsubj   _       _
2       saw     _       _       _       _       0       root    _       _
3       Sarah   _       _       _       _       2       dobj    _       _
4       with    _       _       _       _       2       prep    _       _
5       a       _       _       _       _       6       det     _       _
6       telescope       _       _       _       _       4       pobj    _       _
7       .       _       _       _       _       2       punct   _       _

>>> print(f"arcs:  {dataset.arcs[0]}\n"
          f"rels:  {dataset.rels[0]}\n"
          f"probs: {dataset.probs[0].gather(1,torch.tensor(dataset.arcs[0]).unsqueeze(1)).squeeze(-1)}")
arcs:  [2, 0, 2, 2, 6, 4, 2]
rels:  ['nsubj', 'root', 'dobj', 'prep', 'det', 'pobj', 'punct']
probs: tensor([1.0000, 0.9999, 0.9966, 0.8944, 1.0000, 1.0000, 0.9999])

SuPar also supports parsing from tokenized sentences or from file. For BiLSTM-based semantic dependency parsing models, lemmas and POS tags are needed.

>>> import os
>>> import tempfile
# if the gpu device is available
# >>> torch.cuda.set_device('cuda:0')  
>>> dep = Parser.load('dep-biaffine-en')
>>> dep.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0]
1       I       _       _       _       _       2       nsubj   _       _
2       saw     _       _       _       _       0       root    _       _
3       Sarah   _       _       _       _       2       dobj    _       _
4       with    _       _       _       _       2       prep    _       _
5       a       _       _       _       _       6       det     _       _
6       telescope       _       _       _       _       4       pobj    _       _
7       .       _       _       _       _       2       punct   _       _

>>> path = os.path.join(tempfile.mkdtemp(), 'data.conllx')
>>> with open(path, 'w') as f:
...     f.write('''# text = But I found the location wonderful and the neighbors very kind.
1\tBut\t_\t_\t_\t_\t_\t_\t_\t_
2\tI\t_\t_\t_\t_\t_\t_\t_\t_
3\tfound\t_\t_\t_\t_\t_\t_\t_\t_
4\tthe\t_\t_\t_\t_\t_\t_\t_\t_
5\tlocation\t_\t_\t_\t_\t_\t_\t_\t_
6\twonderful\t_\t_\t_\t_\t_\t_\t_\t_
7\tand\t_\t_\t_\t_\t_\t_\t_\t_
7.1\tfound\t_\t_\t_\t_\t_\t_\t_\t_
8\tthe\t_\t_\t_\t_\t_\t_\t_\t_
9\tneighbors\t_\t_\t_\t_\t_\t_\t_\t_
10\tvery\t_\t_\t_\t_\t_\t_\t_\t_
11\tkind\t_\t_\t_\t_\t_\t_\t_\t_
12\t.\t_\t_\t_\t_\t_\t_\t_\t_

''')
...
>>> dep.predict(path, pred='pred.conllx', verbose=False)[0]
# text = But I found the location wonderful and the neighbors very kind.
1       But     _       _       _       _       3       cc      _       _
2       I       _       _       _       _       3       nsubj   _       _
3       found   _       _       _       _       0       root    _       _
4       the     _       _       _       _       5       det     _       _
5       location        _       _       _       _       6       nsubj   _       _
6       wonderful       _       _       _       _       3       xcomp   _       _
7       and     _       _       _       _       6       cc      _       _
7.1     found   _       _       _       _       _       _       _       _
8       the     _       _       _       _       9       det     _       _
9       neighbors       _       _       _       _       11      dep     _       _
10      very    _       _       _       _       11      advmod  _       _
11      kind    _       _       _       _       6       conj    _       _
12      .       _       _       _       _       3       punct   _       _

>>> con = Parser.load('con-crf-en')
>>> con.predict(['I', 'saw', 'Sarah', 'with', 'a', 'telescope', '.'], verbose=False)[0].pretty_print()
              TOP                       
               |                         
               S                        
  _____________|______________________   
 |             VP                     | 
 |    _________|____                  |  
 |   |    |         PP                | 
 |   |    |     ____|___              |  
 NP  |    NP   |        NP            | 
 |   |    |    |     ___|______       |  
 _   _    _    _    _          _      _ 
 |   |    |    |    |          |      |  
 I  saw Sarah with  a      telescope  . 

>>> sdp = Parser.load('sdp-biaffine-en')
>>> sdp.predict([[('I','I','PRP'), ('saw','see','VBD'), ('Sarah','Sarah','NNP'), ('with','with','IN'),
                  ('a','a','DT'), ('telescope','telescope','NN'), ('.','_','.')]],
                verbose=False)[0]
1       I       I       PRP     _       _       _       _       2:ARG1  _
2       saw     see     VBD     _       _       _       _       0:root|4:ARG1   _
3       Sarah   Sarah   NNP     _       _       _       _       2:ARG2  _
4       with    with    IN      _       _       _       _       _       _
5       a       a       DT      _       _       _       _       _       _
6       telescope       telescope       NN      _       _       _       _       4:ARG2|5:BV     _
7       .       _       .       _       _       _       _       _       _

Training

To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Below is an example of training Biaffine Dependency Parser:

$ python -m supar.cmds.dep.biaffine train -b -d 0 -c dep-biaffine-en -p model -f char

Alternatively, SuPar provides some equivalent command entry points registered in setup.py: dep-biaffine, dep-crf2o, con-crf and sdp-biaffine, etc.

$ dep-biaffine train -b -d 0 -c dep-biaffine-en -p model -f char

To accommodate large models, distributed training is also supported:

$ python -m supar.cmds.dep.biaffine train -b -c dep-biaffine-en -d 0,1,2,3 -p model -f char

You can consult the PyTorch documentation and tutorials for more details.

Evaluation

The evaluation process resembles prediction:

# if the gpu device is available
# >>> torch.cuda.set_device('cuda:0')  
>>> Parser.load('dep-biaffine-en').evaluate('ptb/test.conllx', verbose=False)
loss: 0.2393 - UCM: 60.51% LCM: 50.37% UAS: 96.01% LAS: 94.41%

See examples for more instructions on training and evaluation.

Performance

SuPar provides pretrained models for English, Chinese and 17 other languages. The tables below list the performance and parsing speed of pretrained models for different tasks. All results are tested on the machine with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and Nvidia GeForce GTX 1080 Ti GPU.

Dependency Parsing

English and Chinese dependency parsing models are trained on PTB and CTB7 respectively. For each parser, we provide pretrained models that take BiLSTM as encoder. We also provide models trained by finetuning pretrained language models from Huggingface Transformers. We use robert-large for English and hfl/chinese-electra-180g-large-discriminator for Chinese. During evaluation, punctuation is ignored in all metrics for PTB.

NameUASLASSents/s
dep-biaffine-en96.0194.411831.91
dep-crf2o-en96.0794.51531.59
dep-biaffine-roberta-en97.3395.86271.80
dep-biaffine-zh88.6485.471180.57
dep-crf2o-zh89.2286.15237.40
dep-biaffine-electra-zh92.4589.55160.56

The multilingual dependency parsing model, named dep-biaffine-xlmr, is trained on merged 12 selected treebanks from Universal Dependencies (UD) v2.3 dataset by finetuning xlm-roberta-large. The following table lists results of each treebank. Languages are represented by ISO 639-1 Language Codes.

LanguageUASLASSents/s
bg96.9594.24343.96
ca95.5794.20184.88
cs95.7993.83245.68
de89.7485.59283.53
en93.3791.27269.16
es94.7893.29192.00
fr94.5691.90219.35
it96.2994.47254.82
nl96.0493.76268.57
no95.6494.45318.00
ro94.5989.79216.45
ru96.3795.24243.56

Constituency Parsing

We use PTB and CTB7 datasets to train English and Chinese constituency parsing models. Below are the results.

| Name

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号