Project Icon

CAT

创新图像恢复模型 强化远程特征建模

CAT是一种创新的图像恢复模型,采用矩形窗口自注意力机制扩大特征提取范围。模型通过水平和垂直矩形窗口并行聚合特征,实现窗口间交互。结合CNN的局部特性,CAT在全局-局部特征耦合方面表现出色。实验证实该方法在多种图像恢复任务中超越了现有技术水平。

BrushNet - 双分支扩散结构实现即插即用图像修复模型
BrushNetGithub图像修复开源项目扩散模型深度学习计算机视觉
BrushNet是一种新型图像修复模型,采用双分支扩散结构,可集成到预训练扩散模型中。通过分离遮罩图像特征和噪声潜在表示,并对预训练模型实施像素级控制,提高了图像修复效果。该模型适用于通用场景和特定应用,为图像编辑和生成提供了新的解决方案。
attention-viz - 帮助理解Transformer模型在语言和视觉任务中的自注意力机制
GithubTransformerattention-viz可视化开源项目深度学习自然语言处理
此项目通过可视化技术帮助研究人员理解Transformer模型在语言和视觉任务中的自注意力机制,展示查询与关键向量的关系和整体模式。AttentionViz提供了交互式工具,支持多输入序列分析,提升了模型理解,并在多个应用场景中展现其实用性。
VisionLLaMA - 基于LLaMA的统一视觉模型,为图像生成和理解设立新基准
GithubVisionLLaMA图像理解图像生成开源项目计算机视觉预训练模型
VisionLLaMA是一个基于LLaMA架构的统一视觉Transformer模型,专为处理2D图像而设计。该模型提供平面和金字塔两种形式,适用于广泛的视觉任务,包括图像感知和生成。通过各种预训练范式的广泛评估,VisionLLaMA在多项图像生成和理解任务中展现出卓越性能,超越了现有最先进的视觉Transformer模型,为计算机视觉领域提供了新的基准。
ReNoise-Inversion - 迭代重噪图像反演方法提升重建精度和编辑效果
AI图像处理GithubReNoise图像反演开源项目扩散模型迭代噪声
ReNoise-Inversion项目开发了一种创新的图像反演方法,利用迭代重噪机制提高重建精度,同时保持低操作成本。该方法适用于多种采样算法和模型,包括最新的加速扩散模型。实验表明,ReNoise技术在精确度和速度方面表现优异,同时保持了图像的可编辑性。这一技术为基于文本的真实图像编辑开辟了新途径。
epicrealism_pureevolutionv5-inpainting - Stable Diffusion专用的高质量图像修复模型
DiffusersGithubHuggingface人工智能开源许可开源项目机器学习模型深度学习
epicrealism_pureevolutionv5-inpainting是一个为Stable Diffusion开发的图像修复模型。该模型能够修复和增强图像中的缺失或损坏部分,提供逼真和自然的处理效果。通过先进的机器学习技术,模型可以理解图像上下文,生成与周围环境协调的修复内容。适用于多种图像编辑和修复任务,包括去除物体、修复老照片和填充缺失区域。模型支持多种常见图像格式,处理速度快,在图像修复质量上优于同类产品。
Awesome-Transformer-Attention - 视觉变换器与注意力机制的最新研究进展
GithubTransformerVision Transformer多模态学习开源项目注意力机制深度学习
探索视觉变换器和注意力机制的最新发展,包括由Min-Hung Chen持续更新的论文、代码与链接资源。适合学术与实际应用,发现创新思路。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
contrastive-unpaired-translation - 基于对比学习的无监督图像转换
Contrastive Unpaired TranslationCycleGANGithubPyTorch图像到图像转换对比学习开源项目
CUT项目提供了一种基于PyTorch的无监督图像间转换方法,采用局部对比学习和对抗学习技术。该方法较CycleGAN具备更快的训练速度和更低的内存占用,并且无需手工设计损失函数和反向网络,适合单图像训练。支持Linux或macOS系统及Python 3环境,适合在NVIDIA GPU上运行,整个训练和测试流程简单易操作。该项目由UC Berkeley和Adobe Research团队开发,并在ECCV 2020会议中展示。
xcit_tiny_12_p8_224.fb_in1k - 跨协方差图像转换器实现图像分类与特征提取
GithubHuggingfaceImageNet-1kXCiT图像分类开源项目机器学习模型神经网络
基于XCiT(Cross-Covariance Image Transformer)架构开发的图像分类模型,在ImageNet-1k数据集上完成预训练。模型包含670万参数量,GMACs为4.8,支持224x224图像输入分辨率。通过跨协方差注意力机制实现图像特征表示,可用于图像分类和特征提取。模型已集成到timm库中,支持top-k分类预测和特征向量提取功能。
SRGAN - 使用生成对抗网络提升单图像超分辨率效果
GithubSRGANTensorLayerXVGG19开源项目计算机视觉超分辨率
本项目展示了使用生成对抗网络(GAN)如何实现单图像的高分辨率超分辨率。使用预训练的VGG19模型和高分辨率图像进行训练,支持多种深度学习框架,如TensorFlow、PaddlePaddle、MindSpore,未来还将支持PyTorch。项目提供完整的训练和评估指南,并通过简单的代码修改可以切换不同的后端框架。适用于图像处理和计算机视觉领域的研究人员和开发人员,项目中展示了技术实现的详细结果,还提供了参考文献和讨论资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号