Project Icon

yolort

简易高效的YOLOv5目标检测工具

yolort项目致力于简化和优化YOLOv5的训练与推理。采用动态形状机制,结合预处理和后处理,支持LibTorch、ONNX Runtime、TVM、TensorRT等多种后端的轻松部署。项目遵循简洁设计理念,安装与使用便捷,支持通过PyPI和源码安装。提供丰富的推理接口示例和详细文档,使目标检测更为轻松,适用于广泛的应用场景。

YOLOv8-TensorRT-CPP - 用C++和TensorRT实现高效的YOLOv8模型推理
CPPGithubTensorRTYOLOv8开源项目深度学习目标检测
本文介绍了如何使用TensorRT的C++ API实现YOLOv8模型的推理,支持目标检测、语义分割和身体姿态估计,包括系统要求、安装步骤、模型转换和项目构建方法。内容中强调了在GPU上运行推理的注意事项和性能基准测试,提供了从PyTorch到ONNX模型转换的详细步骤,是开发计算机视觉应用的参考资料。
rtdetr_r50vd - 全新RT-DETR模型提升精度与速度的实时物体检测方案
GithubHuggingfaceRT-DETRYOLO变压器实时应用开源项目模型目标检测
RT-DETR是面向实时物体检测的创新模型,通过混合编码器和最小化不确定性查询选择,实现高精度和快速检测。模型在COCO和Objects365数据集训练,支持速度调整以适应多种场景。RT-DETR-R50/R101在COCO上分别取得53.1%和54.3%的平均精度,在T4 GPU上达到108和74 FPS,性能超过YOLO模型。
ultralytics - 适用于对象检测、跟踪、实例分割和图像分类等多种应用场景的多功能对象检测模型
GithubUltralyticsYOLOv8姿态估计实例分割开源项目目标检测
Ultralytics的YOLOv8是一款前沿对象识别模型,提供了与前代产品相比更优化的特性。适用于对象检测、跟踪、实例分割和图像分类等多种应用场景,其高速准确性和用户友好性使其成为AI领域开发者的优选。更多细节,请参阅官方文档或参与Discord社区互动。
awesome-yolo-object-detection - YOLO目标检测开源项目与资源汇编
GithubYOLO实时检测开源项目机器学习目标检测视觉AI
提供YOLO目标检测的全面资源汇编。包含官方以及多个针对特殊任务或硬件的优化版本,涵盖YOLOv1至YOLOv7等系列。项目中还包括丰富的学习资源、应用示例及工具,为学者和开发者提供了解及使用YOLO技术的优质资料。
ssd.pytorch - PyTorch实现的高效SSD目标检测器,兼容多数据集与实时可视化
GithubPyTorchSSD开源项目数据集训练评估
该项目实现了基于PyTorch的SSD目标检测器,支持VOC和COCO数据集,并可使用Visdom进行训练过程中的实时损失可视化。页面包含详细的安装、训练和评估指南,并提供预训练模型的使用说明。项目展示了高效性能,并包含未来功能更新计划,帮助开发者快速上手并扩展应用。
darknet - 开源实时目标检测框架及YOLO算法
DarknetGithubYOLO开源项目目标检测神经网络计算机视觉
Darknet是一个开源神经网络框架,为YOLO实时目标检测系统提供基础。最新的YOLOv7算法在5-160 FPS范围内性能优异,超越了同类检测器。项目支持Linux和Windows平台,提供预训练模型、详细构建指南和命令行操作接口,方便用户进行目标检测、模型训练等任务。
RT-DETR - 超越YOLO的实时目标检测算法领域突破
CVPR 2024GithubRT-DETR实时目标检测开源项目深度学习物体识别
RT-DETR是一个开源的实时目标检测算法项目,在性能上超越了YOLO系列。它提供多种模型变体,从轻量级R18到大型X模型,适应不同应用需求。在COCO和Objects365数据集上,RT-DETR展现出卓越性能,最高达到56.2mAP和217FPS。项目同时支持PyTorch和PaddlePaddle框架,便于研究和应用。
YOLO-Patch-Based-Inference - 补丁式推理优化小物体检测和实例分割
GithubYOLO实例分割开源项目深度学习目标检测计算机视觉
这个Python库实现了基于补丁的推理方法,用于改进小物体检测和实例分割。它支持多种Ultralytics模型,包括YOLOv8/v9/v10、FastSAM和RTDETR,可用于对象检测和实例分割任务。库提供了推理结果可视化功能,并通过优化的补丁处理和结果合并提高了小物体检测准确性。项目还包含交互式笔记本和教程,方便用户学习和使用。
yolov8-streamlit-detection-tracking - YOLOv8和Streamlit打造的实时目标检测追踪应用
GithubStreamlitYOLOv8实时目标检测对象追踪开源项目计算机视觉
该项目基于YOLOv8和Streamlit开发,提供实时目标检测和追踪功能的Web应用。支持RTSP、UDP、YouTube等多种视频源,以及静态视频和图像处理。用户可通过直观界面调整模型参数,查看可视化结果并下载。项目展示了计算机视觉与Web应用的集成,适合学习和演示目的。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号