#4D重建
shape-of-motion - 从单个视频实现4D场景重建的前沿技术
4D重建单视频重建Shape of Motion计算机视觉深度学习Github开源项目
Shape of Motion项目展示了一种新型4D重建方法,可从单个视频重建动态3D场景。该项目结合深度学习和计算机视觉技术,实现运动物体的精确重建。项目包含完整工作流程,涵盖预处理、模型训练和性能评估。研究团队公开了源代码和数据集,为计算机视觉领域提供了有价值的研究资源。这一技术可能在计算机图形学、增强现实等方面带来应用突破。
Consistent4D - 单目视频到360度动态物体的生成
动态物体生成单目视频神经辐射场时空一致性4D重建Github开源项目
Consistent4D是一种创新方法,能从未校准的单目视频生成动态物体的360度视图。该方法将360度动态物体重建转化为4D生成问题,利用物体级3D感知图像扩散模型监督动态神经辐射场的训练。Consistent4D引入级联DyNeRF和插值驱动的一致性损失,无需繁琐的多视图数据收集和相机校准。实验表明,该方法在4D动态物体生成和文本到3D生成任务中展现出优异性能。