#AI视觉

Segment-and-Track-Anything - 视频中任意对象的自动分割与追踪系统
SAM-Track视频分割目标跟踪交互式分割AI视觉Github开源项目
Segment-and-Track-Anything是一个专注于视频中任意对象分割和追踪的开源项目。该系统集成了SAM模型的关键帧分割能力和DeAOT模型的多目标追踪功能。它支持自动检测新对象、交互式修改、文本提示等多种操作模式,适用于街景分析、增强现实、细胞追踪等领域。项目提供了直观的WebUI界面和灵活的参数设置,使用户能够轻松实现复杂的视频对象分割和追踪任务。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
DIVACLIPAI视觉扩散模型迁移学习Github开源项目
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
nxtp - 基于下一标记预测的创新物体识别技术
Object RecognitionAI视觉深度学习计算机视觉自然语言处理Github开源项目
nxtp项目开发了一种创新的物体识别方法,将任务转化为下一标记预测。该技术利用语言模型嵌入扩展预测空间,实现开放式标签生成。通过自回归处理和高效采样,nxtp可进行大规模标签预测,如生成前100个最可能的标签。这一方法无需预定义标签集,为计算机视觉领域的物体识别提供了更灵活的解决方案。
MVDream - 多视角扩散模型实现高质量3D内容生成
MVDream多视角扩散模型3D生成AI视觉深度学习Github开源项目
MVDream是一个开源的多视角扩散模型项目,用于3D内容生成。项目在GitHub上提供两个代码仓库:多视角扩散模型(https://github.com/bytedance/MVDream)和集成SDS技术的3D生成(https://github.com/bytedance/MVDream-threestudio)。由字节跳动研究团队开发,为计算机视觉和3D生成领域提供新的工具和方法。
grounded-segment-anything-colab - 图像分割与编辑工具 支持多种inpainting模型
Grounded-Segment-AnythingColab图像分割inpaintingAI视觉Github开源项目
grounded-segment-anything-colab是一个基于IDEA-Research项目的图像处理工具,集成了图像分割和编辑功能。该工具支持多种inpainting模型,包括runwayml/stable-diffusion-inpainting和自定义16位模型。项目提供Colab教程,方便用户进行图像分割和编辑操作。此工具为图像处理提供了灵活高效的解决方案。