#自编码器
相关项目
Awesome-Deep-Graph-Clustering
ADGC项目汇集了最新深度图聚类研究成果,包括重构性、对比性和生成性等多种方法的论文、代码和数据集。此外还收录了重要的综述文献,为研究人员提供了全面的深度图聚类资源和最新进展。
sequitur
sequitur是一个专为序列数据设计的Python自编码器库。它集成了三种自编码器架构和预设训练循环,使用者只需两行代码即可完成模型构建和训练。该库适用范围广泛,涵盖单变量、多变量时间序列及视频等序列数据,尤其适合快速入门自编码器的开发者。sequitur灵活支持数字、向量和矩阵等多种序列类型,为数据处理提供多样化选择。
vit-mae-large
这是一个使用MAE方法预训练的大型Vision Transformer模型。通过随机遮挡75%的图像块进行自监督学习,该模型有效学习图像的内部表示。它可用于图像分类等下游视觉任务,采用masked autoencoder架构进行预训练。该模型由Facebook Research团队开发,基于ImageNet-1K数据集训练,适用于各种计算机视觉应用。
sdxl-vae
SDXL-VAE项目为SDXL模型提供了优化版变分自动编码器。通过增大批量大小和采用指数移动平均,新autoencoder在所有重建指标上超越原始模型。它易于集成到diffusers工作流中,提升生成图像的局部高频细节。在COCO 2017数据集评估中,SDXL-VAE在rFID、PSNR、SSIM等指标上均优于原始VAE,显著改善了图像重建质量。