#BitNet

BitNet: 革命性的1比特Transformer模型

2024年09月05日
Cover of BitNet: 革命性的1比特Transformer模型

BitNet: 用1比特变换器缩放大型语言模型

2024年09月05日
Cover of BitNet: 用1比特变换器缩放大型语言模型
相关项目
Project Cover

BitNet

BitNet是一种创新的1比特变压器实现,通过BitLinear层替换标准线性投影,实现大型语言模型的高效压缩。该项目提供PyTorch实现,包含BitLinear、BitNetTransformer和BitAttention等核心组件,支持推理和Hugging Face模型集成。BitNet还探索了视觉任务应用,展现了多模态领域的潜力。项目包括训练脚本、性能基准测试和CUDA优化,为研究人员和开发者提供了全面的工具集。

Project Cover

Llama3-8B-1.58-100B-tokens

这是一个基于BitNet 1.58b架构的语言模型,通过对Llama-3-8B-Instruct进行微调开发。模型在FineWeb-edu数据集上完成了1000亿token的训练,采用1e-5学习率。测评显示其部分性能指标接近原版Llama3 8B,体现了极限量化在大型语言模型领域的应用潜力。

Project Cover

bitnet_b1_58-large

本项目复现了BitNet b1.58的1比特量化语言模型,采用RedPajama数据集进行了1000亿token的训练。通过实施论文中提出的训练策略,项目成功重现了700M、1.3B和3B规模模型的性能。评估结果显示,在困惑度(PPL)和多项零样本任务中,复现模型与原论文报告的数据高度一致,证实了该方法在模型压缩和维持性能方面的有效性。项目还提供了详细的评估流程和命令,方便研究者进行复现和进一步探索。通过比较不同规模模型在各项任务上的表现,该研究为大规模语言模型的高效压缩和部署提供了valuable的实践参考。

Project Cover

bitnet_b1_58-3B

该项目再现了BitNet b1.58的研究,通过使用RedPajama数据集训练100B个token,实现了两阶段学习率和权重衰减。模型代码可在开源平台获取。初步结果表明,模型在PPL和零样本准确率方面表现优异,计划在资源允许时进一步扩大训练规模和模型容量。

Project Cover

bitnet_b1_58-xl

BitNet b1.58模型使用RedPajama数据集进行训练,涵盖100B个令牌,重点研究超参数调节与两阶段学习率及权重衰减的优化。在不同参数下测评PPL和零样本准确率,揭示出因数据处理等随机因素导致的再现性细微差异。模型在Huggingface平台开源,配套评价方法简化效能验证。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号