#CatBoost
catboost - 梯度提升和分类特征支持的机器学习工具
CatBoost机器学习梯度提升决策树Apache SparkGithub开源项目
CatBoost是一种基于决策树的梯度提升算法,具有高准确性和速度优势,能够处理数值和分类特征。它提供快速的GPU训练、直观的可视化工具和与Apache Spark的分布式训练支持,适用于多种应用场景。通过官方文档和教程,用户可以快速上手,并通过参数调优和交叉验证进一步优化模型性能。
benchmarks - 主流机器学习库全面性能基准测试
CatBoost基准测试机器学习性能比较GPU加速Github开源项目
Benchmarks是GitHub上的开源项目,致力于多个主流机器学习库的性能对比。该项目涵盖CatBoost、XGBoost、LightGBM和H2O等库,对比范围包括二元分类、训练速度、模型评估、排序任务和SHAP值计算。此外还提供CPU与GPU性能对比和Kaggle竞赛数据集上的质量评估。这些全面的基准测试为机器学习从业者提供了客观的性能参考数据。