#Chronos

Chronos: 革命性的时间序列预测模型

2024年08月30日
Cover of Chronos: 革命性的时间序列预测模型

Chronos-forecasting学习资料汇总 - 基于语言模型的时间序列预测框架

2024年09月10日
Cover of Chronos-forecasting学习资料汇总 - 基于语言模型的时间序列预测框架
相关项目
Project Cover

chronos-forecasting

Chronos是一款基于语言模型架构的预训练时间序列预测工具。它通过量化处理将时间序列转换为标记序列,并使用大规模的公开和合成数据进行训练。Chronos模型在零样本场景中表现优异,提供从预测到嵌入提取的完整解决方案。通过AutoGluon,用户可轻松进行模型集成和云端部署,提升预测性能和应用的灵活性。

Project Cover

chronos-t5-base

Chronos-T5-Base是一款基于T5架构的时间序列预测基础模型,具有2亿参数规模。该模型将时间序列转换为token序列,通过交叉熵损失训练,能够生成多样化的概率性预测。Chronos-T5-Base在大量公开时间序列数据和合成数据上进行了预训练,适用于广泛的时间序列预测场景。研究人员和开发者可以通过Python接口轻松调用该模型,实现高效的时间序列分析和预测。

Project Cover

chronos-t5-base

Chronos-T5-Base是一个基于T5架构的时间序列预测基础模型,拥有2亿参数。该模型将时间序列数据转化为token序列,并通过交叉熵损失函数进行训练。通过采样多个可能的未来轨迹,Chronos-T5-Base能够生成概率预测结果。模型在大量公开时间序列数据和合成数据上训练,适用于多种时间序列预测场景,为研究人员和开发者提供了一个强大的预训练工具。

Project Cover

chronos-t5-large

Chronos-T5-Large是一个大规模时间序列预测基础模型,基于T5架构设计,包含7.1亿参数。模型通过将时间序列转换为token序列进行训练,能够生成概率性预测结果。它在海量公开时间序列数据和合成数据上训练,适用于广泛的时间序列预测任务。研究人员可使用简洁的Python接口调用模型,获取未来趋势预测及相应的置信区间。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号