ReLA
GRES项目提出了一种新颖的泛化引用表达分割方法,在CVPR 2023会议上被评为亮点论文。该项目采用Swin Transformer骨干网络,在gIoU指标上达到63.60%的性能。GRES项目不仅发布了新数据集,还开源了代码实现,支持ResNet-50和Swin-Tiny等多种骨干网络,为研究人员提供了多样化选择。项目的GitHub仓库提供了详细的安装说明、推理和训练代码,以及预训练模型。