#CLIPSeg
panoptic-segment-anything - 零样本全景分割融合SAM、Grounding DINO和CLIPSeg的创新方法
SAM零样本全景分割Grounding DINOCLIPSeg实例分割Github开源项目
panoptic-segment-anything项目提出了一种创新的零样本全景分割方法。该方法巧妙结合Segment Anything Model (SAM)、Grounding DINO和CLIPSeg三个模型,克服了SAM在文本感知和语义分割方面的局限性。项目提供Colab notebook和Hugging Face Spaces上的Gradio演示,方便用户体验这一pipeline。此外,预测结果可上传至Segments.ai进行微调,为计算机视觉研究开辟了新的可能性。
clipseg-rd64-refined - 基于文本和图像提示的先进图像分割策略
模型一样本学习零样本学习复杂卷积图像分割开源项目HuggingfaceGithubCLIPSeg
该模型引入先进的复杂卷积技术,支持零样本和单样本图像分割。结合文本与图像提示,该模型在图像分析中提供高效且准确的分割性能。