#ConViT
convit_base.fb_in1k - ConViT架构图像分类模型在ImageNet-1k上的应用
ConViTHuggingface图像分类模型深度学习timmGithub开源项目ImageNet-1k
convit_base.fb_in1k是一个在ImageNet-1k数据集上训练的ConViT架构图像分类模型。该模型融合卷积神经网络和视觉Transformer技术,拥有8650万参数,计算量为17.5 GMACs。它支持224x224尺寸的输入图像,可用于图像分类和特征提取。研究者可通过timm库加载此预训练模型,进行图像分类或提取图像嵌入向量等任务。
convit_small.fb_in1k - ConViT结合软卷积特性的图像分类框架
Github图像分类Huggingface深度学习ConViTImageNet-1k开源项目神经网络模型
ConViT是一个在ImageNet-1k数据集上训练的图像分类模型,结合了CNN和Transformer优势。模型参数量2780万,支持224x224图像输入,可用于分类和特征提取任务。模型提供预训练权重,适用于多种计算机视觉应用场景。