#跨编码器
FlashRank - 为优化搜索和检索流程设计的超轻量的Python库
FlashRank重排序跨编码器模型神经网络Github开源项目
FlashRank是一款极速、超轻量的Python库,专为优化搜索和检索流程设计。基于最新的SoTA大规模语言模型和交叉编码器,支持多种再排序模式并能在常规CPU上运行。模型轻至4MB,适合AWS Lambda等无服务器环境,有效减低运行成本,提升处理效率。适合多样化的部署场景和搜索策略,是提升搜索效率的优选工具。
stsb-TinyBERT-L-4 - 轻量级BERT模型用于语义文本相似度任务
模型Quora预训练模型开源项目SentenceTransformers跨编码器Huggingface语义相似度Github
stsb-TinyBERT-L-4是一个基于TinyBERT架构的轻量级模型,用于语义文本相似度任务。该模型在STS基准数据集上训练,采用交叉编码器结构预测句子对的语义相似度得分。模型可通过SentenceTransformers库的CrossEncoder类或Transformers的AutoModel类使用,为自然语言处理应用提供语义相似度评估功能。
nli-distilroberta-base - DistilRoBERTa自然语言推理跨编码器模型
零样本分类模型自然语言推理SentenceTransformers跨编码器Github开源项目Huggingfacedistilroberta-base
nli-distilroberta-base是一个基于DistilRoBERTa的自然语言推理模型。该模型在SNLI和MultiNLI数据集上训练,能够判断句子对之间的矛盾、蕴含和中性关系。除了自然语言推理,它还支持零样本文本分类。模型可通过SentenceTransformers或Transformers库轻松集成,适用于多种自然语言处理应用。
quora-roberta-base - 基于RoBERTa的Quora问题重复识别跨编码器
跨编码器Huggingface模型Github问题检测重复问题Quora开源项目文本分类
该跨编码器模型基于RoBERTa-base架构,专为识别Quora平台上的重复问题而设计。通过SentenceTransformers框架训练,模型能为问题对预测0-1范围内的相似度分数。虽然在Quora重复问题数据集上表现出色,但仅适用于检测语义相近的问题,不适合评估一般性相似度。模型集成简便,几行代码即可在项目中实现。
jina-reranker-v2-base-multilingual - 高性能多语言文本重排序模型优化信息检索效果
文本重排序搜索相关性Huggingface开源项目jina-reranker-v2-base-multilingual跨编码器Github模型多语言
jina-reranker-v2-base-multilingual是一款优化文本重排序的多语言transformer模型。它支持多语言查询-文档对处理、长文本输入和闪存注意力机制,在文本检索、多语言处理、函数调用和SQL重排序等基准测试中表现卓越。该模型能显著提升信息检索系统的性能和准确度。
PhoRanker - 先进的越南语文本排序模型
Github开源项目PhoRankertransformers文本排序自然语言处理跨编码器Huggingface模型
PhoRanker是一款专门针对越南语文本排序的交叉编码器模型。在MS MMarco Passage Reranking - Vi - Dev数据集上,该模型在NDCG@10和MRR@10等重要指标方面表现优异。PhoRanker兼容sentence-transformers和transformers库,提供了便捷的使用方法和预处理步骤。模型不仅性能卓越,还能保持每秒处理15个文档的高效率。对于需要进行越南语文本排序的应用场景,PhoRanker是一个值得考虑的选择。
cross-encoder-mmarco-mMiniLMv2-L12-H384-v1 - 多语言文本重排序模型提升搜索结果准确性
mMiniLMv2Github开源项目重新上传Apache许可证Huggingface跨编码器模型再排序模型
mmarco-mMiniLMv2-L12-H384-v1是一个多语言文本重排序模型,基于MiniLM架构设计。它采用12层transformer结构和384维隐藏层,专注于提升文本搜索和排序的准确性。该模型支持多语言输入,适用于搜索结果优化和文档排序等任务,在保持高效性能的同时兼顾了跨语言应用。作为一个开源项目,它为研究人员和开发者提供了强大的文本相关性评分工具。