#高效推理

marlin - 专为LLM推理设计的FP16xINT4优化内核
Marlin高效推理FP16xINT4CUDANVIDIA GPUGithub开源项目
Marlin是一款专为LLM推理设计的FP16xINT4优化内核,可实现接近4倍的速度提升,并支持16-32个token的batchsize。通过高效利用GPU资源,如全局内存、L2缓存、共享内存和张量核心,Marlin克服了现代GPU的FLOP和字节比率挑战。多种优化技术包括异步权重加载和双缓冲共享内存加载,确保性能最大化。该项目适用于CUDA 11.8及以上版本,支持NVIDIA Ampere或Ada架构的GPU,并与torch 2.0.0和numpy兼容。在各种基准测试中,Marlin展示了卓越的性能,尤其在持久计算和大batchsize处理方面表现出色。
Efficient-LLMs-Survey - 大语言模型效率优化技术综述
大语言模型模型压缩量化高效训练高效推理Github开源项目
本项目系统性地综述了大语言模型效率优化研究,包括模型压缩、高效预训练、微调和推理等方面。从模型、数据和框架三个维度对相关技术进行分类,全面梳理了该领域的最新进展,为研究人员和从业者提供了有价值的参考资料。
LLMBox - 全面的大型语言模型训练与评估框架
LLMBox大语言模型训练管道模型评估高效推理Github开源项目
LLMBox是一个综合性大型语言模型(LLM)库,集成了统一的训练流程和全面的模型评估功能。该框架旨在提供LLM训练和应用的完整解决方案,其设计注重实用性,在训练和使用过程中体现出高度的灵活性和效率。LLMBox支持多样化的训练策略和数据集,提供丰富的评估方法,并具备高效的推理和量化能力,为LLM的研究和开发提供了强大支持。
awesome-efficient-aigc - AIGC效率优化技术与资源汇总
AIGCLLM量化高效推理模型压缩Github开源项目
该项目汇集了提高AI生成内容(AIGC)效率的最新技术资源,包括大语言模型(LLMs)和扩散模型(DMs)的优化方法。收录内容涵盖前沿研究论文、代码实现和综述文章,重点关注量化、微调等效率提升技术。这一持续更新的资源库为AIGC领域的研究和开发提供了全面的参考,有助于推动相关技术的进步与落地应用。
cobra - 高效推理的多模态大语言模型扩展
Cobra多模态大语言模型Mamba高效推理视觉语言模型Github开源项目
Cobra项目是一个基于Mamba架构的多模态大语言模型,旨在实现高效推理。该模型支持文本和图像输入,提供预训练权重、训练代码和推理脚本。Cobra在处理视觉语言任务时保持高性能,为研究人员和开发者提供了实用的工具。项目包括模型加载、图像处理和文本生成等功能,便于用户快速上手和应用。