#EfficientSAM
ComfyUI-YoloWorld-EfficientSAM: 高效物体检测与分割的开源实现
2024年09月04日
相关项目
awesome-foundation-and-multimodal-models
此页面介绍了多个最新的多模态和基础预训练模型,如YOLO-World、Depth Anything、EfficientSAM等。这些模型在图像分类、图像描述和零样本物体检测等任务中表现出色,并提供学术论文、GitHub项目和使用示例,帮助深入了解与应用这些前沿技术。
ComfyUI-YoloWorld-EfficientSAM
该项目非官方实现了YOLO-World和EfficientSAM,通过融合这两个模型,提供高效的对象检测与实例分割功能。版本V2.0新增了蒙版分离与提取功能,支持指定蒙版单独输出,可处理图像和视频。项目特点包括支持加载多种YOLO-World和EfficientSAM模型,提供检测框厚度、置信度阈值、IoU阈值等配置选项,以提升检测与分割的精准性。详细的视频演示和安装指南,使用户能够轻松上手,体验高效的图像处理能力。
EfficientSAM
EfficientSAM是一个基于掩码图像预训练的通用图像分割模型,支持点提示、框提示、全景分割和显著性检测等功能。该模型在保持高精度的同时显著提高了处理速度,已集成到多个开源工具中。项目提供在线演示和Jupyter notebook示例,便于研究人员和开发者快速上手和应用。