#EVA
EVA - 推进大规模视觉表示学习的前沿
EVA视觉表示CLIP自监督学习多模态学习Github开源项目
EVA是北京智源人工智能研究院开发的视觉表示学习模型系列。它包括多个子项目,如EVA-01和EVA-CLIP,致力于探索大规模掩码视觉表示学习的极限和改进CLIP训练技术。这些模型在主流平台上提供,为计算机视觉研究提供了有力支持。EVA项目涵盖基础模型、自监督学习和多模态学习等前沿领域。
eva_large_patch14_196.in22k_ft_in22k_in1k - EVA大型图像分类模型适用于多种计算机视觉应用
模型神经网络开源项目Huggingface图像分类ImageNetGithub深度学习EVA
eva_large_patch14_196.in22k_ft_in22k_in1k是基于EVA架构的图像分类模型。该模型在ImageNet-22k数据集上预训练和微调,最后在ImageNet-1k上微调,达到88.592%的Top-1准确率。模型包含3.04亿参数,支持处理196x196像素的图像,可用于图像分类和特征提取等计算机视觉任务。其性能和versatility使其成为视觉项目的有力工具。