#GPT-Neo
gpt-neo - 使用 mesh-tensorflow 库的模型并行 GPT-2 和 GPT-3 样式模型的实现
GPT-Neo模型训练预训练模型TPU支持GPT-3Github开源项目
GPT-Neo项目在mesh-tensorflow库的支持下,开发出了类似于GPT-3的高级模型与数据并行技术。项目支持在TPU及GPU上进行高效训练与推理,并集成了局部注意力、线性注意力和多专家系统等先进技术,能有效处理大规模参数模型。GPT-Neo还提供了多项模型评估功能,专注于语言和科学推理,拓宽了其在自然语言处理应用中的领域。
gpt-neo-1.3B - EleutherAI开发的13亿参数语言模型GPT-Neo 1.3B
文本生成神经网络Huggingface模型GPT-Neo机器学习Github开源项目自然语言处理
GPT-Neo 1.3B是EleutherAI团队开发的大规模语言模型,基于GPT-3架构,拥有13亿参数。该模型在The Pile数据集上训练,适用于文本生成、问答等自然语言处理任务,并在多项基准测试中表现出色。模型采用MIT开源许可证,但使用时需注意可能存在的偏见和不当内容。
gpt-neo-125m - 轻量级自然语言生成模型
文本生成EleutherAIHuggingface模型深度学习GPT-NeoGithub开源项目自然语言处理
GPT-Neo 125M是EleutherAI团队基于GPT-3架构开发的轻量级自然语言处理模型,拥有1.25亿参数。该模型在Pile数据集上经过3000亿token的训练,能够生成连贯文本,适用于多种NLP任务。尽管规模较小,但性能优异。值得注意的是,由于训练数据的多样性,使用时需谨慎筛选输出内容,以避免潜在的偏见或不当表述。
gpt-neo-2.7B - EleutherAI开发的27亿参数GPT-Neo语言模型展现多任务处理能力
模型Github开源项目语言模型EleutherAIHuggingfaceGPT-Neo自然语言处理深度学习
GPT-Neo 2.7B是EleutherAI基于GPT-3架构开发的大规模语言模型,在The Pile数据集上训练了4200亿个token。模型在语言理解、科学推理等多个评估任务中表现优异,超越同等规模的GPT-2和GPT-3 Ada。尽管存在潜在偏见,GPT-Neo 2.7B仍为自然语言处理领域提供了新的研究方向和应用可能。
TinyStories-33M - 基于GPT-Neo架构的开源文本生成模型
模型训练开源项目GPT-NeoTinyStories模型Huggingface文本生成数据集Github
该模型以TinyStories数据集为基础,采用GPT-Neo架构进行训练,可通过API简便生成文本,广泛应用于自然语言处理任务。