#Librispeech

hubert-large-ls960-ft - Facebook开发的HuBERT大型语音识别模型实现低错误率转录
Huggingface模型机器学习语音识别LibrispeechGithub开源项目HuBERT自监督学习
HuBERT-Large-LS960-FT是Facebook AI开发的大型语音识别模型,在960小时LibriSpeech数据集上微调。该模型处理16kHz采样语音,在LibriSpeech和Libri-light基准测试中表现优异,显著降低词错误率。采用自监督学习方法,结合声学和语言模型,为语音识别、生成和压缩提供强大表示学习能力。
wav2vec2-large-xlsr-53-gender-recognition-librispeech - Wav2Vec2模型在Librispeech数据集上的音频性别识别应用
模型Librispeech性别识别wav2vec2Github语音识别深度学习Huggingface开源项目
这是一个基于facebook/wav2vec2-xls-r-300m模型在Librispeech-clean-100数据集上微调的音频性别识别模型。模型在评估集上达到0.9993的F1分数,性能表现优异。项目提供了完整的推理代码,包括自定义数据集处理和批量音频处理功能。训练过程采用了Adam优化器和线性学习率调度等策略。该模型为音频性别识别任务提供了一个高效可靠的解决方案。
wav2vec2-large-960h - 大规模预训练语音识别模型实现低资源高性能
Huggingface模型深度学习语音识别LibrispeechGithub开源项目自然语言处理Wav2Vec2
Wav2Vec2-Large-960h是Facebook开发的预训练语音识别模型,在960小时LibriSpeech数据上微调。采用自监督学习从原始音频学习表示,在低资源场景下表现优异。LibriSpeech测试集上词错误率为1.8/3.3。模型可用于语音转写,提供了详细使用示例。
wav2vec2-large-robust-ft-libri-960h - 多领域预训练的大规模语音识别模型
模型Librispeech自监督学习Github语音识别机器学习开源项目HuggingfaceWav2Vec2
wav2vec2-large-robust-ft-libri-960h是一个基于Wav2Vec2架构的大规模语音识别模型。该模型在多个领域的音频数据集上进行了预训练,包括Libri-Light、CommonVoice、Switchboard和Fisher,涵盖了有声读物、众包语音和电话交谈等多种音频类型。随后,模型在960小时的Librispeech数据集上进行了微调。这种多领域预训练和目标域微调的方法显著提高了模型在跨领域语音识别任务中的性能。模型支持16kHz采样率的语音输入,适用于需要处理多样化音频数据的应用场景。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号