#LLaMa
Modal Finetune SQL: 使用LlamaIndex微调Llama 2实现高效文本到SQL转换
llm-chain
llm-chain是一组强大的Rust库,支持创建高级LLM应用,如聊天机器人和智能代理。平台支持云端和本地LLM,提供提示模板和多步骤链功能,以处理复杂任务。还支持向量存储集成,为模型提供长期记忆和专业知识。兼容ChatGPT、LLaMa和Alpaca模型,并通过llm.rs实现Rust语言的LLM支持,无需C++依赖。
llama.onnx
此项目提供LLaMa-7B和RWKV-400M的ONNX模型与独立演示,无需torch或transformers,适用于2GB内存设备。项目包括内存池支持、温度与topk logits调整,并提供导出混合精度和TVM转换的详细步骤,适用于嵌入式设备和分布式系统的大语言模型部署和推理。
modal_finetune_sql
此项目展示了在Text-to-SQL数据集上微调LLaMa 2 7B模型的过程。利用LlamaIndex、Modal和Hugging Face datasets等工具,项目提供了从数据加载到模型微调和推理的完整教程。开发者可以学习如何针对结构化数据库执行自然语言查询,并通过提供的模型权重下载选项,快速构建Text-to-SQL应用。项目涵盖了整个开发流程,为Text-to-SQL应用的实现提供了实用的参考。
Skywork-Reward-Gemma-2-27B
Skywork-Reward-Gemma-2-27B是基于gemma-2-27b-it架构开发的奖励模型。该模型仅使用80K高质量偏好对数据进行训练,在数学、编程和安全等多个领域的复杂场景偏好判断中表现优异。目前在RewardBench排行榜位居榜首,证明了利用相对小规模数据集和简单数据处理技术也能构建高性能奖励模型。
ruadapt_llama3_instruct_lep_saiga_kto_ablitirated
ruadapt_llama3_instruct_lep_saiga_kto_ablitirated是一个基于LLaMA 3和Learned Embedding Propagation (LEP)技术的大语言模型。它通过KTO和abliteration技术,在saiga_preferences数据集上训练,支持俄语和英语。模型运用先进的分词技术优化俄语适配,为自然语言处理提供新方案。这一创新模型特别适用于需要高质量俄语理解和生成的NLP任务,如机器翻译、文本分类和问答系统等。