#MambaVision
MambaVision - 高效且灵活的视觉骨干网络,适用于各种分辨率的图像处理
MambaVision深度学习计算机视觉图像分类Hugging FaceGithub开源项目
MambaVision采用混合Mamba-Transformer架构,结合自注意力和混合块,实现了卓越的图像分类和特征提取效果。其创新的对称路径设计提升了全局上下文的建模能力,并提供多种预训练模型。MambaVision支持多种分辨率图像处理,适用于分类、检测和分割等任务。最新模型支持Hugging Face和pip包,详细信息见[官网](https://huggingface.co/collections/nvidia/mambavision-66943871a6b36c9e78b327d3)。
MambaVision-B-1K - MambaVision结合Mamba和Transformer的创新视觉骨干网络
模型Github开源项目Huggingface图像分类特征提取深度学习模型计算机视觉MambaVision
MambaVision-B-1K是一种融合Mamba和Transformer优势的混合视觉骨干网络。通过重新设计Mamba结构和在末层添加自注意力模块,该模型增强了视觉特征建模能力和长程空间依赖捕获。在ImageNet-1K分类任务中,MambaVision-B-1K在Top-1准确率和吞吐量方面实现了新的SOTA Pareto前沿。这一模型适用于图像分类和特征提取,支持多种输入分辨率,为计算机视觉应用提供了高效的解决方案。
MambaVision-S-1K - MambaVision融合Mamba与Transformer的计算机视觉新型架构
模型Github开源项目Huggingface图像分类特征提取深度学习模型计算机视觉MambaVision
MambaVision-S-1K是一种新型计算机视觉模型,首次融合了Mamba和Transformer的设计理念。研究者通过改进Mamba结构增强了其视觉特征建模能力,并验证了与Vision Transformer的有效集成。在ImageNet-1K基准测试中,该模型在准确率和效率方面取得了平衡。MambaVision可用于图像分类和特征提取任务,提供了简洁的调用接口。这一创新架构为计算机视觉领域带来了新的研究思路和应用前景。
MambaVision-T-1K - 提高视觉模型长距离空间依赖的处理能力
特征提取开源项目模型GithubMambaVisionHuggingface计算机视觉变换器图像分类
MambaVision是一个混合视觉模型,将Mamba与Transformer的优点结合,重新设计后的Mamba通过引入自注意力机制有效捕获长距离空间依赖。该模型在Top-1准确率和吞吐量上表现突出,创造了新的性能标准。用户可以通过简单的安装和代码导入来使用其图像分类和特征提取功能,满足多样化的应用需求,同时提供阶段性和平均池化特征输出。