#mDeBERTa-v3
mDeBERTa-v3-base-mnli-xnli - 支持100种语言的零样本分类和自然语言推理模型
模型多语言模型零样本分类开源项目HuggingfaceXNLI数据集自然语言推理mDeBERTa-v3Github
mDeBERTa-v3-base-mnli-xnli是一个支持100种语言的自然语言推理模型。它在XNLI和MNLI数据集上进行微调,在15种语言的XNLI测试集上达到80.8%的平均准确率。该模型可用于零样本分类和NLI任务,为多语言NLP应用提供了有效解决方案。模型基于Microsoft的mDeBERTa-v3架构,在CC100多语言数据集上预训练。
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 - mDeBERTa-v3模型实现多语言自然语言推理和零样本分类
零样本分类模型自然语言推理多语言mDeBERTa-v3Github开源项目Huggingface机器学习
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7是一个支持100种语言的自然语言推理和零样本分类模型。它基于mDeBERTa-v3-base架构,通过XNLI和multilingual-NLI-26lang-2mil7数据集微调,包含27种语言的270多万个文本对。该模型在XNLI和英语NLI测试中表现优异,展现出卓越的跨语言迁移能力,为多语言NLP任务提供了强大解决方案。
mDeBERTa-v3-base-finetuned-nli-jnli - 基于多语言NLI和JGLUE数据集微调的日语NLP模型
Huggingface零样本分类模型Github开源项目mDeBERTa-v3微调多语言模型自然语言推理
该模型基于微软mdeberta-v3-base在多语言NLI和JGLUE数据集上微调而来。它支持日语零样本文本分类和跨语言自然语言推理任务,在评估集上达到68.08%准确率和67.42% F1分数。模型可应用于日语主题分类、跨语言蕴含关系判断等自然语言处理任务,为日语NLP应用提供了有力支持。