#MegEngine
YOLOX学习资料汇总 - 高性能无锚点YOLO目标检测模型
2024年09月10日
YOLOX: 突破性的目标检测模型
2024年08月30日
相关项目
YOLOX
YOLOX是一种无锚版YOLO,设计简洁,性能更优,旨在弥合研究与工业界的差距。项目基于PyTorch实现,并提供MegEngine版本。支持可视化工具、JIT编译、快速训练优化等多项更新。未来计划推出YOLOX-P6、大模型、Objects365预训练和Transformer模块等功能。通过融合ONNX、TensorRT、OpenVINO等多种部署方案,满足不同应用场景需求。
MegEngine
MegEngine是一个高效、可扩展且易于使用的深度学习框架,具有统一的训练和推理框架、低硬件要求和跨平台高效推理的三大关键特性。支持x86、Arm、CUDA、RoCM等多种平台,兼容Linux、Windows、iOS、Android等系统。通过DTR算法和Pushdown内存规划器,大幅降低GPU内存使用。适用于模型开发到部署的各个环节,致力于构建开放友好的AI社区。