#Meta AI

高分辨率全球树冠高度地图:革命性的森林测绘技术

2024年09月05日
Cover of 高分辨率全球树冠高度地图:革命性的森林测绘技术

Make-A-Video-Pytorch: 革命性的文本到视频生成技术

2024年09月04日
Cover of Make-A-Video-Pytorch: 革命性的文本到视频生成技术
相关项目
Project Cover

Segment Anything Model

Meta AI推出的Segment Anything Model (SAM),能够一键从图像中分割任意对象。此AI模型具备零样本泛化能力,可处理未知对象和图像,适用于视频追踪、图像编辑等多种应用场景。

Project Cover

make-a-video-pytorch

此项目实现了 Meta AI 的 Make-A-Video 在 PyTorch 下的版本,利用伪 3D 卷积和时序注意力技术,显著增强了视频的时序一致性。支持图像和视频帧的处理,并且可轻松适用于 DALL-E2 和 Imagen 等模型。项目提供了完整的安装和使用指南,并支持空间和时间一致性的 Unet 模型。

Project Cover

HighResCanopyHeight

HighResCanopyHeight项目运用自监督视觉转换器和卷积解码器,将RGB卫星影像转化为高分辨率森林冠层高度图。通过大规模预训练和针对性微调,该技术展现出跨地理区域和影像类型的适应性。这一创新方法在精确度和细节呈现上超越传统技术,为森林监测和生态研究提供了有力支持。

Project Cover

encodec_24khz

EnCodec是Meta AI开发的神经网络音频编解码器,采用流式编码器-解码器架构和量化潜在空间。它使用多尺度频谱图对抗性训练,有效减少伪影,产生高质量音频样本。EnCodec在不同带宽下性能优异,适用于实时音频压缩、解码和各种音频处理应用。

Project Cover

open_llama_7b_v2

OpenLLaMA项目发布了开放许可的LLaMA模型复刻,包括3B、7B和13B模型,使用多种数据集进行训练。项目提供了PyTorch和JAX格式的模型权重,能替代原始LLaMA模型,适用于多种应用场景。模型在多任务测试中表现优异,部分任务超过原始模型。用户可通过Hugging Face平台加载模型,建议暂时避免使用快速分词器。项目旨在提升高效语言模型研究,为AI社区提供共享资源。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号