#Meta-Llama-3.1-70B-Instruct

Meta-Llama-3.1-70B-Instruct-GPTQ-INT4 - INT4量化版提升多语言对话效率
模型量化开源项目HuggingfaceMeta-Llama-3.1-70B-InstructGithub大语言模型推理GPTQ
本项目展示了Meta Llama 3.1 70B Instruct模型的INT4量化版本。通过AutoGPTQ技术,将原FP16模型压缩至INT4精度,在维持性能的同时显著减少内存使用,仅需约35GB显存即可运行。该项目兼容多个推理框架,如Transformers、AutoGPTQ、TGI和vLLM,便于根据不同需求进行选择。项目还附有详细的量化复现指南,方便用户独立完成模型量化过程。
Meta-Llama-3.1-70B-Instruct-FP8 - Meta-Llama-3.1-70B模型的FP8量化版本 提升效率降低资源需求
语言模型Huggingface模型FP8量化人工智能Github开源项目vLLMMeta-Llama-3.1-70B-Instruct
Meta-Llama-3.1-70B-Instruct模型的FP8量化版本,通过将权重和激活量化为8位浮点数,大幅降低了模型体积和GPU内存需求。支持多语言商业和研究应用,在OpenLLM基准测试中平均得分84.29,性能接近原始模型。可通过vLLM后端高效部署,适用于智能对话等多种场景。
Meta-Llama-3.1-70B-Instruct-FP8-KV - Meta-Llama-3.1的FP8量化方法实现高效部署
HuggingfaceFP8量化推理Quark开源项目模型GithubMeta-Llama-3.1-70B-Instruct
项目使用Quark对Meta-Llama-3.1模型进行FP8量化,优化了线性层(不含lm_head)的权重和激活过程。支持用户在单或多GPU平台上部署并在vLLM兼容平台上高效运行。尽管伪量化评估结果可能与实际推理精确度略有不同,但仍提供关键指标,助力模型开发与优化。通过FP8对称模式的应用,模型性能得到提升,并提供了准确性的参考标准,为后续模型开发提供支持。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号