#Meta-Llama-3-8B-Instruct
CogVLM2 - 基于Llama3-8B的GPT4V级开源多模态模型
CogVLM2CogVLM2-VideoMeta-Llama-3-8B-Instruct视频理解图像理解Github开源项目
CogVLM2是基于Meta-Llama-3-8B-Instruct的下一代模型系列,在多项基准测试中表现优异,支持中英文内容和高分辨率图像处理。该系列模型适用于图像理解、多轮对话和视频理解,特别适合需要处理长文本和高分辨率图像的场景。CogVLM2系列还支持8K内容长度,并在TextVQA和DocVQA等任务中显著提升表现。体验更先进的CogVLM2和CogVLM2-Video模型,迎接未来视觉智能挑战。
tiny-random-Llama-3 - 基于Meta-Llama-3-8B-Instruct的微型化语言模型
模型开源GithubMeta-Llama-3-8B-Instructtransformers开源项目Huggingface自然语言处理
tiny-random-Llama-3是Meta-Llama-3-8B-Instruct模型的微型化版本,旨在降低模型规模并简化部署过程。该项目基于Transformers库开发,采用Apache 2.0开源许可。虽然不支持直接推理,但为开发者提供了一个探索和实验大型语言模型缩小版本的轻量级选择。
Llama-3-8b-ita-ties-pro - 通过Mergekit实现的意大利语LLM模型合并及性能评价
Llama-3-8b-ita-ties-pro意大利LLM性能评估HuggingfaceGithub开源项目模型Meta-Llama-3-8B-Instruct模型合并
本项目结合Mergekit工具,采用TIES方法合并了意大利语的LLM模型,虽未超越现有最佳模型,但达到了满意的效果。详细性能请参阅意大利语言模型排行榜。合并过程涉及DeepMount00/Llama-3-8b-Ita和swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA,基准模型为meta-llama/Meta-Llama-3-8B-Instruct。模型合并使用bfloat16数据类型,并对参数如密度和权重进行了优化。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
数据协调HuggingfaceGPTQ量化Meta-Llama-3-8B-InstructApache Airflow模型Github开源项目
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。