#Mistral 7B

fltr - 自然语言搜索工具学习资料汇总 - 基于Mistral 7B或Mixtral 8x7B的grep替代品

2024年09月10日
Cover of fltr - 自然语言搜索工具学习资料汇总 - 基于Mistral 7B或Mixtral 8x7B的grep替代品

llm-colosseum学习资料汇总 - 用街霸3对战评估LLM性能的创新方法

2024年09月10日
Cover of llm-colosseum学习资料汇总 - 用街霸3对战评估LLM性能的创新方法

OnnxStream: 轻量级ONNX推理引擎助力边缘设备运行大型AI模型

2024年09月02日
Cover of OnnxStream: 轻量级ONNX推理引擎助力边缘设备运行大型AI模型

fltr:基于 Mistral 7B 和 Mixtral 8x7B 的自然语言搜索工具

2024年08月31日
Cover of fltr:基于 Mistral 7B 和 Mixtral 8x7B 的自然语言搜索工具
相关项目
Project Cover

fltr

fltr是一种基于Mistral 7B和Mixtral 8x7B模型的搜索工具,适用于自然语言问题。支持在Nvidia RTX 3070和Intel I5-6500设备上高效运行,分别处理每秒52个和5个输入标记。安装简便,兼容Linux和macOS系统。用户可通过简单命令快速上手,包括检测电子邮件垃圾邮件等功能。

Project Cover

llm-colosseum

llm-colosseum利用街头霸王III平台让LLMs展开对战,评测它们的快速决策和策略适应。各模型根据表现获取ELO评分,通过模拟真实对战环境,探索不同LLM在实际竞技表现。项目创设新型基准测试,通过实战对比加深对LLM竞技性和响应智能的了解。

Project Cover

OnnxStream

OnnxStream专为优化内存使用而设计,支持在低资源设备上高效运行大型模型如Stable Diffusion和TinyLlama。在仅有512MB RAM的Raspberry Pi Zero 2上,实现图像生成和语言模型推理,而无需额外交换空间或磁盘写入。通过解耦推理引擎与模型权重组件,OnnxStream显著降低内存消耗,提供轻量且高效的推理解决方案。其静态量化和注意力切片技术增强了多种应用中的适应性和性能。

Project Cover

NeuralFlow

NeuralFlow是一个Python工具,用于可视化Mistral 7B语言模型的中间层输出。它生成512x256的热图,展示模型每层的输出。该工具可用于分析模型结构和监控fine-tuning过程中的变化。NeuralFlow将4096维张量数据转化为直观的视觉表现,为AI模型开发提供新的分析方法。

Project Cover

Mistral 7B

本站聚焦Mistral 7B开源语言模型,提供模型介绍、部署指南和在线体验。汇集微调版本导航、使用教程和研究动态,是Mistral 7B相关资源的综合参考平台。

Project Cover

Mistral-7B-Instruct-v0.2-GPTQ

Mistral-7B-Instruct-v0.2模型的GPTQ量化版本,提供4位和8位精度等多种参数选项。支持Linux和Windows的GPU推理,兼容多个开源框架。采用Mistral提示模板,适用于指令任务。由TheBloke量化发布,旨在提供高效易用的开源大语言模型。

Project Cover

Mistral-7B-Instruct-v0.1-GGUF

本项目提供Mistral 7B Instruct v0.1模型的GGUF格式量化版本。GGUF是llama.cpp团队推出的新格式,替代了GGML。项目包含2至8比特多种量化模型文件,支持CPU和GPU高效推理,适用于llama.cpp、text-generation-webui等多种客户端和库。此外还提供兼容性说明、文件说明和使用指南。

Project Cover

Mistral-7B-v0.1-sharded

Mistral-7B-v0.1是一个预训练的生成文本模型,拥有70亿参数,采用先进的变压器架构,并在多项基准测试中表现优于Llama 2 13B。该模型分片为2GB,以减少RAM需求,适合在资源有限的环境中应用,但不包含内容监管功能。若遇到'mistral'错误,通过安装transformers源代码可解决。

Project Cover

TinyMistral-248M

TinyMistral-248M基于Mistral 7B模型,参数减少至约2.48亿,专为下游任务微调设计。预训练使用了748.8万个实例,支持文本生成功能,拥有约32,768个token的上下文长度。模型在InstructMix评估中的平均困惑度为6.3,未来将在多数据集上增加训练周期,验证无需大数据集即可进行有效预训练的可能性,并在多个指标测试中表现良好。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号