#模型合并

Platypus: 快速、经济且强大的语言模型微调工具

2024年09月05日
Cover of Platypus: 快速、经济且强大的语言模型微调工具
相关项目
Project Cover

CarbonBeagle-11B

CarbonBeagle-11B合并了不同架构和规模的模型,在文本生成任务中效果显著。采用线性合并方法,将vicgalle/NeuralBeagle-11B与jeonsworld/CarbonVillain-en-10.7B-v4结合,在基准测试中表现良好,特别是在HellaSwag(10-Shot)中取得了88.93的标准化准确率,在AI2推理挑战和Winogrande等数据集上展现出高效能力。模型配置为float16精度,以确保合并后的灵活性和稳定性。详细评估结果可在Open LLM Leaderboard查看。增加应用领域的实际效果和用户反馈能帮助用户更好地了解其实际应用价值。

Project Cover

FuzzyHazel

FuzzyHazel项目致力于探索稳定扩散模型与LoRA技术在文本到图像生成中的应用。通过整合多样化模型,如HazyAbyss、OctaFuzz、MareAcernis等,并使用EasyNegative和pastelmix-lora资源优化,项目展现了多样的高质量图像生成能力。利用权重公式合并模型,提供了对图像生成的细致控管。同时,项目重视图像合并时的色彩、细节和结构的准确性,为高精度图像生成行业提供了新的解决方案,显示出其在AI艺术和设计中的潜力。

Project Cover

IncredibleOdds

IncredibleOdds项目结合Incredible World和Gacha模型,利用diffusers技术,实现从文字到图像的转换,适合游戏艺术和现实主义作品创作。用户可通过种子9119生成高细节图像,如厨房里的卡通考拉和柠檬主题汉堡。这项技术不仅提升了图像生成质量,还扩展了可选的艺术风格,提供了更广泛的创作机会。

Project Cover

NeuralSynthesis-7B-v0.1

NeuralSynthesis-7B-v0.1展示了强大的文本生成能力,结合多种模型优势并通过LazyMergekit合并。在AI2 Reasoning Challenge、HellaSwag、MMLU等任务中取得优异成绩,其在AI2 Reasoning Challenge上的标准化准确率为73.04%、HellaSwag验证集上为89.18%,在TruthfulQA 0-shot任务中达到78.15%的精确度。详细性能及排名可在Open LLM Leaderboard查看。

Project Cover

Violet_Twilight-v0.2-GGUF

Violet_Twilight-v0.2-GGUF是一个融合Azure_Dusk-v0.2和Crimson_Dawn-v0.2的AI语言模型。它采用SLERP技术合并两个基础模型,支持包括中文在内的多种语言处理。该模型使用ChatML格式训练,具备强大的文本生成能力。Violet_Twilight-v0.2-GGUF提供多种采样设置,可根据需求调整输出效果,为AI文本生成应用提供灵活高效的解决方案。

Project Cover

Llama-3-8b-ita-ties-pro

本项目结合Mergekit工具,采用TIES方法合并了意大利语的LLM模型,虽未超越现有最佳模型,但达到了满意的效果。详细性能请参阅意大利语言模型排行榜。合并过程涉及DeepMount00/Llama-3-8b-Ita和swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA,基准模型为meta-llama/Meta-Llama-3-8B-Instruct。模型合并使用bfloat16数据类型,并对参数如密度和权重进行了优化。

Project Cover

NoromaidxOpenGPT4-2-GGUF-iMatrix

NoromaidxOpenGPT4-2通过合并Noromaid-8x7b-Instruct和Open_Gpt4_8x7B_v0.2模型,提升了性能和灵活性。与早期版本相比,新版本基于Open_Gpt4_8x7B_v0.2,采用TIES合并方法。用户可以下载imatrix文件进行额外量化操作。独特的方法使每个版本都有其特定优势。

Project Cover

AnimephilesAnonymous

AnimephilesAnonymous是为动漫爱好者设计的AI文本到图像生成模型,采用stable-diffusion技术生成高质量动画风格图像。通过整合AnythingV7和animeTWO模型,实现细节丰富、生动多样的动画角色形象创作,并解决了绘制精美眼睛的挑战。结合详细图像样本和提示,此模型为艺术创作提供了独特的工具,适用于多种项目。在HuggingFace平台上查看使用示例和案例,探索模型合并配方进行定制图像生成。

Project Cover

Platypus

Platypus是一个开源项目,提供基于LLaMA和LLaMa-2架构的微调和融合模型。该项目使用LoRA和PEFT技术,实现高效的大语言模型微调。Platypus包含完整的训练流程,涵盖数据集精炼、模型微调和权重合并。在多项基准测试中,Platypus展现出优秀性能。这个项目为研究人员和开发者提供了优化定制语言模型的工具。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号