#神经网络库

nnabla-rl:基于神经网络库的深度强化学习框架

2024年09月05日
Cover of nnabla-rl:基于神经网络库的深度强化学习框架

Flax:JAX生态系统中灵活强大的神经网络库

2024年09月05日
Cover of Flax:JAX生态系统中灵活强大的神经网络库

DyNet: 动态神经网络工具包

2024年09月05日
Cover of DyNet: 动态神经网络工具包

SynJax: Google DeepMind推出的JAX结构化概率分布库

2024年09月05日
Cover of SynJax: Google DeepMind推出的JAX结构化概率分布库
相关项目
Project Cover

synjax

SynJax是一个基于JAX的神经网络库,专注于结构化概率分布处理。它支持多种分布类型,包括线性链CRF、半马尔可夫CRF和成分树CRF等。该库提供计算对数概率、边际概率和最可能结构等标准操作,并兼容JAX的主要转换功能。SynJax采用纯Python编写,结合JAX的C++代码,为结构化概率建模提供了高效灵活的解决方案。

Project Cover

dynet

DyNet是一个专为动态结构神经网络设计的开源库,由卡内基梅隆大学主导开发。该库采用C++编写并提供Python接口,可在CPU和GPU上高效运行。DyNet特别适用于自然语言处理任务,在语法分析和机器翻译等领域表现突出。其独特的自动批处理功能进一步提升了处理动态网络的效率。

Project Cover

flax

Flax是一个基于JAX的高性能神经网络库,以灵活性为核心设计理念。它提供神经网络API、实用工具、教育示例和优化的大规模端到端示例。Flax支持MLP、CNN和自编码器等多种网络结构,并与Hugging Face集成,涵盖自然语言处理、计算机视觉和语音识别等领域。作为Google Research与开源社区合作开发的项目,Flax致力于促进JAX神经网络研究生态系统的发展。

Project Cover

nnabla-rl

nnabla-rl是基于Neural Network Libraries构建的深度强化学习库,适用于研究、开发和生产环境。该库提供简洁的Python API,集成多种经典和前沿强化学习算法,实现在线与离线训练的灵活切换。nnabla-rl支持通过nnabla-browser可视化训练过程,安装便捷,兼容GPU加速,并提供交互式示例便于快速上手。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号