#NFNet
dm_nfnet_f0.dm_in1k - NFNet:无归一化层的高效图像分类模型
模型ImageNet-1kNFNet开源项目Huggingface图像分类特征提取Githubtimm
dm_nfnet_f0.dm_in1k是一款基于NFNet(无归一化网络)架构的图像分类模型。该模型在ImageNet-1k数据集上训练,拥有7150万参数,计算量为7.2 GMACs。通过采用Scaled Weight Standardization技术和策略性放置的标量增益,该模型无需使用归一化层即可实现高性能。dm_nfnet_f0.dm_in1k适用于图像分类、特征提取和图像嵌入等多种任务,为大规模图像识别应用提供了高效解决方案。
nfnet_l0.ra2_in1k - 轻量级NFNet模型:无需规范化层的高效图像识别
模型ImageNet-1kNFNet开源项目Huggingface图像分类特征提取Githubtimm
nfnet_l0.ra2_in1k是一种创新的轻量级NFNet图像分类模型,摒弃了传统的规范化层。它通过Scaled Weight Standardization和策略性放置的标量增益,实现了高效的大规模图像识别。基于ImageNet-1k数据集训练,该模型拥有3510万参数,适用于图像分类、特征提取和嵌入任务。这种无需常规规范化层的设计,为高性能图像处理提供了新的可能。