#并行化

QDax: 加速质量多样性算法的开源库

2024年09月05日
Cover of QDax: 加速质量多样性算法的开源库

Tiny GPU: 深入了解图形处理器工作原理的最小化实现

2024年09月05日
Cover of Tiny GPU: 深入了解图形处理器工作原理的最小化实现

Tiny GPU: 一个用于学习GPU工作原理的最小化GPU设计

2024年09月05日
Cover of Tiny GPU: 一个用于学习GPU工作原理的最小化GPU设计

RWKV: 革新RNN的新型语言模型架构

2024年08月30日
Cover of RWKV: 革新RNN的新型语言模型架构
相关项目
Project Cover

RWKV-LM

RWKV是一个高性能的并行化RNN,具有变换器级别的性能。该模型实现了快速的推理和训练速度,不依赖于传统的注意力机制,而是通过隐藏状态进行计算,优化了VRAM的使用,并支持处理无限长度的文本上下文。RWKV的这些特点使其在进行句子嵌入和处理复杂文本任务时显示出优越的能力。

Project Cover

ice

ICE是专为语言模型程序设计的Python库和可视化工具,支持多人模式、代理定义、快速并行执行等功能,允许在浏览器中调试执行轨迹。适用于Python 3.9及以上版本,支持虚拟环境安装和开发,API可能会发生变动,欢迎社区贡献。

Project Cover

tiny-gpu

tiny-gpu是一个精简的GPU实现项目,旨在帮助学习者理解GPU工作原理。该项目聚焦通用GPU和机器学习加速器的核心原理,包括架构设计、SIMD并行化和内存管理。通过Verilog实现、架构文档和矩阵运算示例,tiny-gpu简化了复杂概念,使学习者能从底层理解现代硬件加速器的关键要素。

Project Cover

QDax

QDax是一个开源框架,用于加速质量多样性(QD)和神经进化算法。通过利用硬件加速器和大规模并行化,QDax将原本需要数天甚至数周才能在大型CPU集群上完成的QD算法运行时间缩短至几分钟。作为灵活易扩展的研究工具,QDax适用于各类问题设置,支持MAP-Elites、QDPG等多种核心QD算法,并提供多个基准任务实现。该项目由Adaptive & Intelligent Robotics Lab和InstaDeep联合开发维护。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号