#Polars
polars - 多语言支持的高性能数据分析引擎
Polars数据处理多语言支持高性能DataFrameGithub开源项目
Polars是一个基于Rust开发的高性能数据处理引擎,提供Python、Node.js和R等多语言接口。它采用Apache Arrow列式内存模型,实现惰性/即时执行、多线程和SIMD等技术,高效处理大规模数据。Polars具有强大的表达式API和查询优化能力,支持流式处理超大数据集,在TPC-H基准测试中性能优异。此外,Polars还支持SQL查询和命令行操作,是一款轻量而强大的数据分析工具。
functime - 高性能时间序列机器学习Python库
时间序列机器学习全局预测特征提取PolarsPython库Github开源项目
functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。