#预测
Time-Series-Library
TSLib为深度学习研究者提供了一个专业开源时间序列分析库,涵盖广泛的应用领域,如长短期预测、数据填充、异常检测和分类。本库提供清晰的代码基础,支持时间序列模型的评估与开发,包括最新的模型评估和深度时间序列研究成果。该工具适合科研和开发人员使用,以推动时间序列分析的未来研究与实践。
time-series-transformers-review
本项目专业整理了Transformers在时序数据建模中的资源,涵盖论文、代码和数据,全面总结其最新进展。内容持续更新,开放问题提交和拉取请求,覆盖时序预测、不规则时序建模、异常检测和分类等领域,适合学术研究及实际应用。
Time-series-prediction
TFTS(TensorFlow Time Series)是一个易用的时间序列预测工具包,支持TensorFlow和Keras中的经典及前沿深度学习方法。适用于预测、分类及异常检测任务。提供适应工业、研究和竞赛所需的深度学习模型,配有详尽文档和教程,帮助用户快速入门。
pytorch-3dunet
pytorch-3dunet实现了多种3D U-Net模型及其变体,包括标准3D U-Net、残差3D U-Net和带压缩激励块的残差3D U-Net。该项目支持二元和多分类语义分割以及去噪、学习反卷积等回归问题。项目还支持2D U-Net,提供多种配置示例帮助用户训练和预测。此外,该项目可在Windows和OS X系统上运行,并支持多种损失函数和评估指标,如Dice系数、平均交并比、均方误差等。这一描述更加简洁、流畅,同时保持了准确性。
Vista
Vista是一款通用自动驾驶世界模型,可在多种场景中生成高保真度的预测,并扩展至连续和长期视野。模型支持多模态操作控制,包括转向、速度、指令、轨迹和目标点设定,无需真实操作数据即可评估不同行为。Vista在预测精度和操控灵活性上有显著提升,为自动驾驶技术研究提供了有力支持。
label-studio-ml-backend
Label Studio ML Backend是一个开源SDK,用于将机器学习代码转换为Web服务器。它可与Label Studio实例集成,实现数据标注自动化。支持文本分类、命名实体识别和对象检测等多种模型。具备预标注、交互式标注和模型训练功能。开发者能够自定义ML后端,实现特定的推理逻辑。这个SDK简化了机器学习模型与Label Studio的整合过程,有效提升了数据标注效率。
Merlion
Merlion是一个功能丰富的Python时间序列分析库,集成了预测、异常检测和变点检测等多项能力。它支持单变量和多变量时间序列,提供标准化数据处理、多种算法模型、自动调参、外部变量支持等特性。Merlion还包含实用的后处理规则和灵活的评估流程,可帮助快速开发和基准测试时间序列模型。
Time-Series-Works-Conferences
这是一个汇集时间序列研究最新进展的资源库,整合了多领域的论文、代码和会议信息。项目涵盖多变量预测、概率预测、数据插补和异常检测等任务,提供详细的论文分类和方法总结。同时收录了相关数据集和开源代码,为时间序列研究提供全面的参考。
Bracketwise
Bracketwise是NCAA疯狂三月篮球锦标赛竞猜的智能分析工具。通过算法和可视化界面,它帮助分析竞猜池中的动态变化。应用提供头对头比较、淘汰矩阵、网格视图等功能,让参与者掌握竞猜中的真实情况和胜算。时间旅行和水晶球功能可模拟未来比赛结果对竞猜的影响。Bracketwise增强了NCAA锦标赛竞猜体验,为竞猜策略提供数据支持。