#QLoRA
xtuner
XTuner是一款高效灵活的大模型微调工具包,支持LLM和VLM在多种GPU上的预训练和微调。它能够在单个8GB GPU上微调7B模型,并支持超过70B模型的多节点微调。XTuner兼容DeepSpeed,支持多种优化技术,并涵盖多种微调方法如QLoRA和LoRA。该工具包提供连续预训练、指令微调和代理微调等功能,输出模型可以无缝集成到部署和评估工具中,适应多种应用场景。
Firefly
Firefly作为一个开源大模型训练工具,提供预训练、指令微调和DPO的全面解决方案。支持LoRA、QLoRA等高效训练技术,并涵盖多种主流大模型如Qwen2、Yi-1.5,特别适合显存和资源有限的环境。项目不仅开源多种数据集,还在Open LLM排行榜中展示了QLoRA训练的高效性,并与Unsloth合作,进一步优化了训练效率和显存使用。
finetuned-qlora-falcon7b-medical
项目基于QLoRA技术对Falcon-7B模型进行微调,以更好地处理精神健康对话。优化后的聊天机器人能够随时提供支持和情感帮助,使用来自在线常见问题和医疗博客的数据集,经过预处理以保持会话格式。微调在Google Colab Pro上完成,但模型也能在低阶GPU上运行。PEFT微调模型提升了响应质量,适用于Gradio前端的聊天机器人。
LLM-FineTuning-Large-Language-Models
本项目介绍了如何使用ORPO、QLoRA、GPTQ等技术对大型语言模型(LLM)进行微调,包含具体实例和代码片段。项目还提供与这些技术相关的YouTube视频链接,提供全面的学习资料。此外,项目还包含各类实用工具和技术说明,帮助用户更好地理解和应用这些前沿技术。适合有一定编程基础的研究人员和开发者参考。
fsdp_qlora
fsdp_qlora项目结合FSDP与量化LoRA,实现了在有限显存GPU上高效训练大型语言模型。支持HQQ和bitsandbytes的4位量化、LoRA、DoRA等多种策略,大幅降低内存占用。项目提供详细文档,便于快速上手使用。该方法使在消费级GPU上训练70B参数模型成为可能,为大模型研究提供了实用工具。