#ResNeSt
PyTorch-Encoding - 基于PyTorch的高效深度学习编码网络
PyTorch-Encoding语义分割深度学习ResNeSt图像分类Github开源项目
PyTorch-Encoding由Hang Zhang创建,提供了详细的安装和使用说明,包含图像分类和语义分割模型。项目集成了ResNeSt和Deep TEN等编码网络,在ADE20K和PASCAL Context等数据集上取得了出色表现。其高效的上下文编码方法为深度学习提供了新的解决方案,是计算机视觉领域的重要工具。
resnest14d.gluon_in1k - ResNeSt14d:基于分割注意力机制的深度学习模型
timm特征提取ImageNet-1k模型Github开源项目图像分类ResNeStHuggingface
ResNeSt14d是一款基于ResNet的分割注意力图像分类模型,由研究团队在ImageNet-1k数据集上训练。此模型拥有10.6M的参数和2.8 GMACs,支持224x224的图像尺寸。提供多种功能,包括图像分类、特征提取和图像嵌入。通过timm库实现预训练模型调用,支持快速有效的图像分析和计算机视觉任务。
resnest101e.in1k - ResNeSt101e 基于ResNet架构的高性能分离注意力图像分类模型
模型神经网络开源项目Huggingface图像分类ImageNetResNeStGithub深度学习
ResNeSt101e.in1k是一个基于ResNet架构的分离注意力网络图像分类模型,在ImageNet-1k数据集上训练。该模型拥有4830万参数,13.4 GMACs计算复杂度,支持图像分类、特征提取和图像嵌入等功能。ResNeSt101e在保持较低计算复杂度的同时提供优秀性能,适用于多种计算机视觉应用场景。