#ResNet-152
resnet-152-text-detector - 基于ResNet-152的高效图像文本检测深度学习模型
文本检测计算机视觉图像分类Huggingface深度学习模型Github开源项目ResNet-152
ResNet-152 Text Detector是一个基于ResNet-152架构的深度学习模型,用于快速判断图像是否包含可读文本。该模型在COCO-Text和LLaVAR数据集上训练,使用约14万张图像,其中50%含文本,50%不含文本。模型采用300x300输入分辨率,使用AdamW优化器,学习率为5e-5,训练3个epochs。通过简单的Python代码,开发者可以轻松集成此模型,实现二元分类的图像文本检测功能。
resnet-152 - 深入解析ResNet-152在图像分类中的应用
图像识别ResNet-152卷积神经网络深度学习模型Github开源项目图像分类Huggingface
ResNet-152 v1.5模型在ImageNet-1k上预训练,采用224x224分辨率,改进后的下采样策略提升了模型的准确性。该模型可用于图像分类,亦可在模型中心找到特定任务的微调版本。