#检索模型
相关项目
RAG-Retrieval
RAG-Retrieval项目通过统一方式调用不同RAG排序模型,支持全链路微调与推理。其轻量级Python库扩展性强,适应多种应用场景,提升排序效率。更新内容包括基于LLM监督的微调及其Embedding模型的MRL loss性能提升。
answerai-colbert-small-v1
answerai-colbert-small-v1是Answer.AI开发的ColBERT多向量检索模型。仅有33百万参数,却在多项基准测试中表现出色,超越了许多大规模模型。采用JaColBERTv2.5训练方法,支持文档检索和重排序任务。可通过RAGatouille、Stanford ColBERT等库使用。
efficient-splade-VI-BT-large-doc
SPLADE模型是一种针对文档检索的高效架构,采用查询和文档推理分离设计。该模型在MS MARCO开发集上达到38.0 MRR@10和97.8 R@1000的性能,同时将推理延迟降至0.7毫秒。它在保持与先进神经排序器相近效果的同时,大幅缩短了延迟,接近传统BM25的速度,为文档检索领域提供了平衡效率与准确性的新方案。