#ReXNet
rexnet_100.nav_in1k - 轻量级ReXNet图像分类模型 为资源受限场景提供高效解决方案
模型图像分类ReXNet模型比较GithubImageNet-1k特征提取开源项目Huggingface
rexnet_100.nav_in1k是一款基于ReXNet架构的轻量级图像分类模型,在ImageNet-1k数据集上进行了预训练。该模型仅有4.8M参数和0.4 GMACs,适合在计算资源有限的环境中部署。它支持图像分类、特征图提取和图像嵌入等功能,为开发者提供多样化的应用选择。在ImageNet-1k验证集上,该模型展现出77.832%的Top-1准确率和93.886%的Top-5准确率,在轻量级模型中表现优异。
rexnet_150.nav_in1k - 高效的图像识别与特征提取
timmReXNet特征提取ImageNet-1k模型Github开源项目图像分类Huggingface
ReXNet是一款在ImageNet-1k数据集上预训练的图像分类模型,具有9.7M参数和0.9 GMACs,专为224x224尺寸图像设计。在timm库中实现模型调用,支持图像分类、特征地图提取及嵌入计算,堪称参数量与准确率之间的理想平衡,适用于深度学习研究和开发。